
n C-ILL ook: UNCLSSIFIED Copy 9 f131 copies

AD-A I97 452

IDA PAPER P-2062

EVALUATION OF COMPUTER-AIDED SYSTEM DESIGN
TOOLS FOR SDI BATTLE MANAGEMENT/C 3

ARCHITECTURE DEVELOPMENT

Dennis W. Fife, Editor
Kevin Campbell J. Bret Michael
John Chludzinski Edgar Sibley
Nelson Corcoran David Wheeler
Carlos Gonzalez Christine Youngblut

DTICAl-~LECTE
J ULL 1988 October 1987.' -0 __ O TTMN

Prepared for
Strategic Defense Initiative Organization (SDIO)

INSTITUTE FOR DEFENSE ANALYSES l
1801 N. Beauregard Street. Alexandria, Virginia 22311

W' fW' ' UNCLASSIFIED IDA Log No. NO 87-32835

SECURITY CLASSIFICATION Of THIS PAGE

REPORT DOCUMENTATION PAGE AIN/ 7 eS
I& REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

Unclassifled

2a SECURITY CLASSIFICATION AUTlORITY 3 DISTRIUTION/AVALADILITY or REPORT S

2b DECLASSIFCATION/DOWNGRADNG SCHEDULE Approved for public release - distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

IDA Paper P-2062

6, NAME OF PERFORMING ORGANIZATION 46b OFFICE SYMBOL 7a NAME or MoNIroRmG ORGANIZATION

Institute for Defense Analyses IDA DOD - Ida Management Office .p

6c ADDRESS (City, Slat., and Zip Code) 7b ADDRESS (City, State, and Zip Code)

1801 N. Beauregard St. 1801 N. Beauregard Street
Alexandria, VA 22311 Alexandria, Virginia 22311

ft NAME OF FUNDING/SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if appliceble)
Strategic Defense Initiative Organization SDIO MDA 903 84 C 0031

8c ADDRESS (City, State. and Zip Code) 10. SOURCE OF FUNDING NUMBERS

SDIO/SYS Room 1E149 ROGRAM PROJECT TASK IWORK NIT•
Pentagon, Washington D.C. 20301-7100 EL MEN NO. NO. ACCESSION NO. %

I I T-R1-422 I
1I TITLE (Inuede Security Classification)
Evaluation of Computer-Aided System Design Tools for SDI Battle Management/C3 Architecture DevelopmenL (U)

2 PERSONAL AUTHOR(S) Dennis W. Fife, Kevin Campbell, John Chludzinski, Nelson Corcoran, Carlos Gonzalez,
L Bret Michael, Edgar Sibley, David Wheeler, Christine YounRblut.

:3a TYPE OF REPORT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) IS PAGE COUNT

F FROM _ TO 1987 October 1 170

6 SUPPLEMENTARY NOTATION

17 COSATI CODES il SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
Strategic Defense Initative; Battle Management/C3; TAGS; AUTO-G; DCDS;

FIELD 230P TEAMWORK; Software Through Pictures; computer software tools; SADMT;
graphic computer-aided design; computer-aided software engineering (CASE);
software specification; requirements analysis.

It ABSTRACT (Continue on reverse if necesery and identify by block number)

This IDA Paper was prepared at the request of * Strategic Defense Initiative Organization. The paper documents the
rmdings of an evaluation on the capabilities of certain computer software/computer-aided software engineering (CASE) tools
to provide computer-aided graphic design of Battle Management/C3 for the SDIO. Each tool (of five selected on the basis of the best
available at this time), was installed at IDA. After training by vendor tool staff, an IDA team, using a hands-on design
exercise determined the merits of the tools for SDI application. A comparative summary of the tools is given relative to envisaged
SDI requirements and an extensive questionnaire is answered for each.

20 DISTRIBUTION/AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION

IUNCLASSIFIED/UNLIMrTEDrO SAME AS RPT. C3 yrIC USERS Unclassified

22s NAME or RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code 22c OFFICE SYMBOL •

Dr. Dennis W. Fife, IDA (703) 845-3512 IDA/CSED

DD FORM 1473, 84 MAR 83 APR edition may be used until easted SECURITY CLASSIFICATION OF TillS PA(;E

All other editions are obsolete

......... :-;

... - -' .

UNCLASSIFIEDLa

IDA PAPER P-2062

EVALUATION OF COMPUTER-AIDED SYSTEM DESIGN
TOOLS FOR SDI BATTLE MANAGEMENT/C 3

ARCHITECTURE DEVELOPMENT

Dennis W. Fife, Editor

Kevin Campbell J. Bret Michael k

John Chludzinski Edgar Sibley
Nelson Corcoran David Wheeler
Carlos Gonzalez Christine Youngblut

October 1987 D T! r

....

I D!~.... "-
I)S

I i

INSTITUTE FOR DEESE ANALYSES (I
Contract MDA 903 84 C 0031

Task T-R5-422

UNCLASSIFIED

UNCLASSIFIED

TABLE OF CONTENTS

EXECUTIVE SUMMARY ... 1

SUMMARY OF FINDINGS ... 4

1.0 PURPOSE AND SCOPE .. 5

2.0 EVALUATION APPROACH ... 6

3.0 ANALYSIS.. 8

3.1 Graphics and User Interface ... 8

3.2 System Representations .. 10

3.3 Data Communications Representation ... 13

3.4 SADMT Text Generation .. 14

3.5 Design Support. 14

3.6 Design Validation and Simulation ... 15

3.7 Scale of Designed System ... 17

3.8 Extensibility and Adaptability ... 17

3.9 Team Design Support .. 18

4.0 CONCLUSIONS ... 21

REFERENCES .. 22

APPENDIX A. Tool Summaries ... A-1

APPENDIX B. Tool Evaluations ... B-1 S

APPENDIX C. Design Exercise -- Elevator Control C-I

APPENDIX D. Glossary .. D-1

UNCLASSIFIED

UNCLASSIFIED

TABLE OF FIGURES

APPENDIX A. L!

TAGS
Figure 1 Schematic Block Diagram (Top Level) A-3

Figure 2 Schematic Block Diagram (Exploding INFOSYSTEM) A-4

Figure 3 Input-Output Requirements and Timing Diagram A-5

Figure 4 I/O Parameter Table ... A-7

Figure 5 Macro- 1 Defining Communication .. A-8

Figure 6 Predefined Process Diagram Using MAC- 11 A-9

Figure 7 Input Parameter Table .. A-10

Figure 8 Listing from Diagnostic Analyzer .. A-11

Figure 9 Page Audit for Complete Design .. A- 13

Figure 10 SBD Lattice .. A-14

Figure 11 Data Dictionary Listing .. A-15

Figure 12 Flow Analysis Listing .. A-16

Figure 13 PPD Cross Reference Listing ... A-17

Figure 14 Simulation Blueprint Listing ... A-18

AUTO-ra

Figure 1 Editing window with displayed document tree A-20

Figure 2 Process description for onboard controller, with hidden parts A-21

Figure 3 Process environment list ... A-23

Figure 4 Interface document content .. A-24

Figure 5 Timer icons .. A-25

ii

UNCLASSIFIED

UNCLASSIFIED

SOFTWARE THROUGH PICTURES

Figure 1 IDETool Start-Up Window for STP A-31

Figure 2 Composite data flow and control flow diagram in edit mode of
the Data Flow Editor .. A-32

Figure 3 Next level decomposition of process 4 from Figure 2 A-34

Figure 4 State transition diagram .. A-35

Figure 5 State transition table .. A-36

Figure 6 Query menu of the IDEdd Data Dictionary program A-37

Figure 7 Query response from IDEdd tool ... A-38

Figure 8 Data stru-ture diagram .. A-39

Figure 9 Error report listing from diagram checking A-40

Figure 10 Hardware diagram drawn with PICture A-42

TEAMWORBK
Figure 1 Main Teamwork Window and Menu, with several subordinate

windows opened .. A-47

Figure 2 Process Index for the model of an elevator control system A-48

Figure 3 Data Flow Diagram/Context Diagram for the model A-49

Figure 4 Entity Relationship Diagram ... A-50

Figure 5 Structure chart for a process ... A-51

Figure 6 Process Activation Table ... A-52

Figure 7 State Transition Diagram ... A-53

Figure 8 Module Specification ... A-54

Figure 9 Process Specification ... A-55

Figure 10 Sample of consistency checking output A-56

Figure 11 Data dictionary listing .. A-57

Figure 12 Sample data dictionary entry ... A-58

UNCLASSIFIED

UNCLASSIFIED

EXECUTIVE SUMMARY

Five computer software tools have been assessed for graphic computer-aided

design of Battle Management/C 3 in the Strategic Defense Initiative (SDI) program. They

are: TAGS from Teledyne Brown Engineering, AUTO-G from Advanced System V
Architectures (U. K.), DCDS from TRW and U.S. Army Strategic Defense Command,

Teamwork from Cadre Technologies, and Software Through Pictures from Interactive

Development Environments.

Each tool was installed at IDA and, after training by tool vendor staff, evaluated

through a hands-on design exercise. This supplemented a review of documented %

capabilities, and provided more depth than is typical of software evaluations. Pertinent

excerpts of this report were provided to the tool producers prior to publication and N

appropriate clarifications made from their comments.

Excluding DCDS, IDA evaluators found the tools readily useable for graphic design

in the versions provided to IDA. DCDS lacks the graphic capabilities of the others, and

only test versions of a major uncompleted upgrade were available.

The tools differ significantly in their current capabilities to represent real-time A
systems, support complex software development projects, and provide for design

validation and simulation. In particular, only one, AUTO-G, now generates automatically 0

the textual language representation (SDI Architecture Dataflow Modeling Technique,

SADMT, formerly called SDI Architecture Process Description Language, SA/PDL) that
will be used in testbed simulation by the Strategic Defense Initiative Organization (SDIO).
AUTO-G has a demonstrable SADMT generator, with an updated package due for January

1988 delivery. TAGS is the only tool with its own demonstrable simulation capability.

This generates an Ada simulation of a designed system. TAGS also directly provides

configuration management and other design support needs. Hence, at this time, AUTO-G

UNCLASSIFIED

UNCLASSIFIED

and TAGS have greater capabilities and potential in areas most pertinent to SDI

requirements. DCDS would be included also, except that its graphics interface is inferior to

most leading CASE tools.

Though the five tools rank among the best available, none fully meets SDI

requirements as perceived by IDA. To illustrate, the ten capabilities listed below are

important requirements, but were available only for the tools named in parentheses 1 .

(Where brevity is essential, Software Through Pictures is abbreviated as STP in this

report.)

1. Provides effective graphics (TAGS, AUTO-G, STP, Teamwork);

2. Represents timing requirements (TAGS, AUTO-G, DCDS);

3. Represents process behavior formally (TAGS, AUTO-G, DCDS);

4. Represents hardware allocations explicitly (DCDS);

5. Generates SADMT representation for SDIO simulation testbed (AUTO-G);

6. Provides simulation for dynamic validation by designers (TAGS);

7. Provides requirements traceability (DCDS);

8. Provides version identification (TAGS, AUTO-G, Teamwork);

9. Supports configuration management (TAGS);

10. Supports user-tailored graphic icons and semantics (none).

A table following this summary highlights a comparative view of the tools in a

popularized form. It is keyed by number to detailed questions about the tools, answered in

Appendix B. Appendix B questions represent a complete statement of tool requirements

investigated in this evaluation. Differences in the "smiles" given to each criterion are:

The above list and the following table exclude capabilities planned for future release or available
through auxiliary packages. As examples, TAGS is planning to have SADMT in 1988, and through a
separate package, RVTS; now provides requirements tracing. Version identification for STP is
provided through an auxiliary package. Teamwork will have configuration management in 1988, as
will STP via a separate package.

2

UNCLASSIFIED

P '00- %q R-

UNCLASSIFIED

Graphics and Editing. Panning and picking in AUTO-G are relatively difficult,

though scroll bars are being added in a future version. DCDS is much worse on panning

and has no high resolution graphics to support large, fully labeled diagrams.

Design semantics and supoort. AUTO-G provides the SADMT language.

AUTO-G, TAGS, and DCDS provide similar depth of formal specification capability. STP

and Teamwork lack formal specification of processes and timing requirements.

Team design support. TAGS provides configuration management. TAGS, STP,

and Teamwork provide locks for concurrent work by multiple designers on a single design

project or database. AUTO-G has well-developed versioning. DCDS has none of these.

Documentation and output. TAGS provides a variety of standard database reports

for design support. The others provide the basic means of output and database query,

without significant distinctions. Tool documentation is not exceptional for any, and is

outdated for DCDS.

Static diagnostics. AUTO-G provides the best form of error reports. AUTO-G and
TAGS, because of their depth of formal specification, must check syntax and semantics

more extensively. STP has no diagnostics for state transition tables 2.

Simulation. Only TAGS now offers a self-standing simulation capability.

Adatabilkx. DCDS alone has a database extension feature that is integrated within
its textual specification language. All the tool vendors either now publish or will provide

users with the information needed to access their database. None directly supports user

modification of design icons or their semantics associated with the design database.

The IDA exercise was limited in important respects. IDA has not exercised the

tools on a large team project, and so cannot predict their stability, reliability, or productivity

2 For the July 1987 version provided to IDA; since added to current STP release.

UNCLASSIFIED

UNCLASSIFIED

under the project stresses to be expected for SDI. To reach a final conclusion about their
relative merits for SDI use, all of them should be applied in SDI development over the next "

six months. Extensions and refinements delivered by their developers also should be
monitored, since improvements now under development will change their comparative
standing.

.

SUMMARY OF FINDINGS
CAPABILITY (Pertinent questions in Appendix B)

Graphics and editing (1.5-1.6, 2.1-2.17)

TAGS AUTO-G DCDS STP TEAMWORK
©©©© ©© © S

Design semantics and support (3.1-3.11, 5.1-5.6)

TAGS AUTO-G DCDS SW TEAMVOR

©@ ©©©© ©@© © "
Team design support (1.1-1.4, 7.1-7.9)

TAGS AUTO-G DCDS STP TEAMWORK©©©© ©©©©©

Documentation and output (9.1-96)

TAGS AUTO-G DCDS STP TEAMWORK .,©©©© ©© ©© ©©
Static diagnostics (4.1-4.3)

TAGS AUITO-G DCDS ST, TEAMVORK

@© © ©
Simulation (8.1-8.2)

TAGS AUTO-G DCDS STP TEAMWORK

Adaptability (6.1-6.5)

TAGS AUTO-G DCDS SW TEAMWORK

4
UNCLASSIFIED *

UNCLASSIFIED

1.0 PURPOSE AND SCOPE

This report summarizes capabilities of computer software tools that provide a
computer-aided, graphic means of describing systems. The tools examined are often

categorized as computer-aided software engineering (CASE) tools. They apply to

decomposing and describing system functions which ultimatel) may be implemented by

hardware or software. The target system's operating environment must be defined also, at

least in terms of input and output interfaces. The tools do not force a particular demarcation

between the environment and the system under design. To a degree, they serve also as l

general system engineering tools. •

IDA staff and consultants evaluated the tools by designing an elevator control

system as described in Appendix C. This report captures answers to a set of questions

about tool capabilities as available and used by IDA in August, 1987. The overall

conclusions are meant to highlight use of the tools by design teams developing a complex, 0

real-time control system. ..

Readers are assumed to have background in current software design methods and %

supporting computer-aided tools, so no tutorial is given. Pertinent background references

are listed. An overview in Appendix A introduces each tool. Brief notes about near-future

enhancements are included also, where the tool developers provided definite information.

The next three sections describe the evaluation effort further, and provide summary %

conclusions on the usability, strengths, and weaknesses of the five tools for the Strategic

Defense Initiative.

5%

UNCLASSIFIED

N%.-.

UNCLASSFIED p

2.0 EVALUATION APPROACH

Prior IDA work has assisted this effort with pertinent background. In January,
1987, for example, IDA sponsored a Tools Fair at which 15 vendors of CASE tools
provided briefings and demonstrations for contractors and SDIO officials [Heysteki.
Except for Software Through Pictures, all of the tools examined here were presented at the .
Tools Fair. IDA subsequently investigated the design formalisms underlying selected tools
[Chludzinski], including TAGS, AUTO-G, and DCDS. IDA also has developed the r _
SADMT language [Linn] as a means to uniformly represent complex systems and •
implement an objective and maintainable testbed for simulation and evaluation.

The objective of the effort reported here was to provide a timely assessment of the
usability of selected tools that were under consideration for near-term use in developing
SDI BM/C 3 proposals. Tools were selected that offer the quality and resolution of
workstation grapilics, and that are off-the-shelf, commercial products. DCDS was

included because of its past history of use in defense projects. Available effort for the

design exercise was limited, and other tools that also might qualify were not evaluated. V
Most of the choices made were subsequently identified as leading candidates by SDIO's

BMIC 3 contractors.

The tools were installed at IDA, beginning with TAGS in June, 1987, with the last
one, DCDS for the IBM PC-AT, installed in August, 1987. An exercise team of two or
more IDA research staff or consultants was designated for each tool. Training was
conducted by tool vendor personnel after each tool's installation. The teams were given the
design requirements, Appendix C, and the questionnaire before beginning to use the tools.
Documentation of this report began in mid-August.

The tools were used in the manner of a system designer as the online user, rather ,- .
than the designer working offline with a tool/workstation operator. Whether a given tool,
when used directly by a designer, improves overall designer productivity, may be

- S

61
UNCLASSIFIED

eIt

UNCLASSIFIED

debatable. The IDA evaluators advocate the pro position, but IDA did not attempt any S
productivity measurements. Appendix A provides an overview of each tool, with selected

diagrams or display prints to give the flavor of its graphics. Appendix B presents the

answers to IDA questions in a side-by-side form.

5-

0

%

7

UNCLASSIFIED

.-. ,'.

UNCLASSIFIED

3.0 ANALYSIS .J %.I-

The following paragraphs discuss the tools relative to broadly stated requirements

perceived by IDA. Specific capabilities investigated are identified in the Executive

Summary and detailed in the questions posed and answered in Appendix B.

Dozens of CASE tools are marketed today, and commercial competition is strong.

Thus, off-the-shelf tool capabilities should be expected to change rapidly for the better. In

most cases, the IDA evaluation identified bugs or badly needed extensions, and some

developers attempted to fix these promptly. Most of the tool developers identified major

improvements planned and already underway for 1988.

3.1 GRAPHICS AND USER INTERFACE

Highly productive design with a graphic tool begins from an effective and reliable

user interface, which includes displays, menus, keying sequences, mouse usage, and other

elements dominating the designer-system interaction. Except for DCDS, all of the tools
offer well-developed and useable graphics for decomposing and describing systems.

System description is done in terms of a "design language" embodied in the graphic icons

(or text equivalents) and other tool features. The designer's composition of a description,

by selection, labeling, and interconnection of icons, creates an internal database
representation from which other tool functions and designer actions proceed. F-

The languages of Teamwork and Software Through Pictures are similar and based '

on well-known and widely used data flow and control flow diagramming methods.

TAGS, DCDS, and AUTO-G have distinct and unique design languages, with various

similarities to common notations such as block diagrams and flow charts. The next

subsection on System Representation discusses the semantics of the design languages,

excluding the graphics and user interface.

DCDS was used in beta-test versions of its Ada implementation for VAX and IBM

PC/AT hardware. The beta-test software has many limitations or bugs, which are to be

8

UNCLASSIFIED
N)

UNCLASSIFIED

overcome in the "production" version for the VAX, available in November, 1987. DCDS

is severely limited in graphics capability, compared to the other tools, but this may improve

with a proposed upgrade to Sun workstations, planned for 1988 release. The observations

in this subsection do not include DCDS, because of its limitations.

None of the tools/workstations was found to be extremely easy to use, though IDA -J

evaluators experienced least difficulty in using Teamwork. All the tools have some non-

obvious, error-prone, or otherwise bothersome features relative to common user actions or

situations. Users adjust to these in a short time, but initially find them frustrating.

TAGS, Software Through Pictures, and Teamwork require the user to choose the

position of most, if not all, of the graphic icons and labels in the diagrams representing a

system. IDA users experienced distinct graphic difficulties arising from the ability to
position icons at will. A common difficulty was that some aspect of the internal database
description became hidden or invisible on the displayed image. This arises from user
actions that either overlay one object on another, or fail to delete all parts of an object. In
these cases, diagnostics from analyzing the database content may note errors that cannot be
identified from the visible diagram.

The AUTO-G software, on the other hand, automatically positions icons and text,

and redraws the display after each editing action, avoiding any hidden or overlapping

elements. Occasionally, this produces an annoyingly long response time. Also, it tends to

spread a diagram widely, which may increase the trouble of panning across a large
diagram. A repositioning feature allows a user to easily "squeeze" a diagram, but this

doesn't eliminate the need for design discipline to create only small diagrams. A user may
suppress or "hide" chosen parts of the picture also, to concentrate on other parts.

TAGS is the only system which encourages small diagrams by providing only a

single page drawing or text entry window for its display. The designer may use a

succession of pages, with off-page connectors to join flow lines for diagrams. Panning,

scrolling, and zooming are unnecessary. The other tools offer a window to a very large

drawing area for each diagram. So, user discipline is needed to avoid very large diagrams

and extensive panning or zooming for viewing them. An AUTO-G user can limit diagram

size and complexity through its modularity features (templates and separate documents) as

well as its hiding feature. Teamwork and Software Through Pictures users would follow

9

UNCLASSIFIED

UNCLASSIFIED

some rule such as "only 3 to 7 bubbles per diagram" and the usual top-down

decomposition technique. However, scrolling of a single diagram or table is easy with

either of them.

3.2 SYSTEM REPRESENTATIONS

A crucial issue for SDI is the extent to which a tool provides for specifying all

functions and attributes of a BM/C 3 system in a high level, formal language. IDA
considers a formal language, rather than free text comments, as a paramount need because

of the importance of testing and validation for the SDI. Elements of a formal specification
can be cross-checked by computer, automatically and reliably, for consistency and
completeness. Text annotations and comments, though valuable for human review, only
support laborious and error-prone human effort to find errors. It is difficult to describe a

minimum set of functions and attributes that should be formally specifiable for SDI,

without presenting a mathematical or formalized notation. To avoid the latter, two

alternatives are used below. The first is a conventional, informal description of y

requirements for real-time, database, and artificial intelligence types of systems. The

second alternative considers the system characteristics or semantics expressible in the 10
SADMT language, which SDIO requires as a deliverable representation from BM/C 3

contractors.

InformalViw

All of the tools provide a way to decompose a system, hierarchically, into operating

components and subcomponents. All provide one or more methods of describing

information transfer from one component to another. All provide for describing some
forms of control, such as the activation of one component or activity by another. All except
DCDS support a purely functional or logical decomposition approach, as opposed to a

physical one, if the designer so chooses. DCDS is the only tool that provides explicit "" Y

allocation of function to physical components, but requires this choice earlier than may be
appropriate for some projects.

Only TAGS, AUTO-G, and DCDS also provide for formally specifying absolute

and relative time constraints or deadlines. This is crucial for real-time systems.

tot

UNCLASSIFIED

.d ! ,

UNCLASSIFIED

TAGS, AUTO-G, and DCDS also provide for formally specifying the behavior of

system activities or processes at a detailed and algorithmic level They include diagnostics .. 1

at the algorithmic level.

Teamwork and Software Through Pictures provide state transition diagrams or

tables, and related or alternative diagrams, such as decision tables, for specifying system

control. In theory, such diagrams or tables suffice for describing any computable function,

ignoring timing. Thus, control may be completely and formally specified with these two

tools. But, formal linking of control flow with data flow is missing. Data flows and

control flows may be viewed together on a composite flow display, but a data flow cannot

appear in a control specification table or diagram. So, the tools do not include a formal

basis (e. g., a decision table) for specifying data flow values in relation to control flow

values. They cannot serve by themselves to formally specify the full algorithmic behavior

of a system.

The common means of specifying process behavior with these two tools is a user-

created form of structured text, say, PDL or Ada code. Both Software Through Pictures "

and Teamwork provide simple, though somewhat different templates for the text entry.

The templates are produced automatically with variable and type declarations corresponding

to the input and output data flows defined beforehand by the user's data dictionary entries.

(An error in doing so for Ada enumerated data types is noted in the questionnaire for

Software Through Pictures.) TAGS, AUTO-G, and DCDS also produce compilable data

declarations from the formalized entries in their data dictionaries.

Teamwork and Software Through Pictures permit any textual description a designer
wishes to make of a process, as do other tools. These are not checked by either tool's

diagnostic analysis (because formal process descriptions are not provided within the tool)

nor otherwise processed within the tool itself. Of course, if the designer enters a formal

language text, such as Ada code or SADMT, then a separate compiler or other software

could provide syntax checking or other support. %.N

Database applications additionally need convenient specification of the database

schema, in a form akin to the schema languages of pertinent database management software

(DBMS). DCDS fulfills this requirement through a textual schema-like language.

Software Through Pictures and Teamwork provide the capability to specify entity- *.NI

UNCLASSIFIED

'Ile

UNCLASSIFIED

relationship-attribute (ERA) diagrams, often used to portray database schema. Software "

Through Pictures provides a command to produce a hierarchical text listing corresponding

to an ERA diagram; Teamwork does not. The text form helps to prepare a database

definition for prototyping or simulation on a DBMS package. Neither TAGS nor AUTO-G

provides a means of relating sets of data elements in the form of a schema. All the tools

would require some user-written text processing to manipulate their data dictionary content,

as dumped, into the form of a desired schema language.

None of the tools appears to have techniques especially tailored to specifying

knowledge-based software.

SADMT Semantics

SADMT requires a system's representation as a hierarchy or tree of asynchronously

operating, intercommunicating processes (computations or any other behavior). Besides a
process hierarchy, typed input and output ports, data flow interconnections, and Ada code

for process behavior description, the SADMT language provides certain specification

capabilities that are separable from the designed system specification. These are: port
structure and type constraints; message constraints; event ordering constraints; and

allocation of processes to components of stated hardware configurations (resources).

With regard to SADMT semantics, AUTO-G, TAGS, and DCDS could provide ,

most, but not all, of the capabilities involved from their present design languages. The

generation of a process tree from the internal database should be straightforward, though

not equally easy for each. AUTO-G, TAGS, and DCDS provide for timing and assertions,

but the specifications are embedded within the designed system specification. Depending

on a tool's internal representation, some difficulty could arise in extracting and separating

these to generate valid SADMT.

Neither AUTO-G nor TAGS provides a special means to explicitly describe

hardware configuration and resource allocations. DCDS supports explicit definition of
hardware configuration and associated functional allocations for a given system design.

Teamwork and Software Through Pictures could readily provide the process

hierarchy, which is well-matched to their decomposition approach. Both lack timing, as

already noted, as well as assertions and hardware configuration/allocation.

12

UNCLASSIFIED '

UNCLASSIFIED

Again, all of the tools allow anything to be stated as a textual annotation, but
because comments are not processed, even for static validation, they lack forceful effect.
Automated diagnostics are the sine qua non of any specification capability. Nevertheless, it
is beneficial to be able to create such annotations as a designer recognizes a technical issue
or trade-off, or makes a decision that should be recorded. It is also useful to be able to
apply other tool capabilities to such text annotations.

3.3 DATA COMMUNICATIONS REPRESENTATION

Data communications between physically separate BM/C 3 elements is as crucial to
SDI as communication between software modules. Effectiveness in representing data
communications functions is therefore an important criterion for SDI system and software
engineering tools.

Teamwork and Software Through Pictures have no explicit mechanisms for
specifying data communication interchange. All communication is shown by data flows
and data stores (where buffering and delay occurs). However, representing some aspects
of practical communication runs counter to the design philosophy inherent in data flow
diagrams (DFDs). For instance, depicting physical elements and implementation properties
is discouraged in DFD dogma. Moreover, multiple objects of the same kind typically
would not be pictured as separate processes on a DFD. Thus, point-to-point
communication between numerous elements may be difficult to describe. Showing
separate data flows between every possible communicating party also leads to very
complex diagrams, so unbuffered broadcast communication is difficult to represent with
these tools. And, once again, the lack of a formal means to tie data and control flow
together limits the capability to specify communication protocols.

TAGS and AUTO-G have well developed semantics applicable to data
communications. TAGS semantics implies an underlying (unspecified) transmission
medium without buffering or coordination. The system designer works with synchronous
communication primitives (call, listen, send, and receive), and must fully specify the
consequences (lost messages, retransmission, etc.) of a non-responding recipient. AUTO-
G assumes an underlying asynchronous, buffered transmission medium (messages may be
sent without explicit pre-coordination, but unexpected messages may be lost). For both of U

0

13

UNCLASSIFIED

YK% - %- vq

UNCLASSIFIED

these tools, a designer would explicitly represent any physical communication facility that AC

operated in a different fashion.

DCDS provides both synchronous and asynchronous communication primitives

and means to define the performance of an external communication network.

3.4 SADMT TEXT GENERATION

As mentioned already, AUTO-G is the only tool that is delivered with an automatic

generator of the SADMT language, to support testbed simulation of a designed system. A

working prototype of this generator was included in the version supplied to IDA. Teledyne

Brown has stated their intent to furnish an SADMT generator with TAGS in 1988.

3.5 DESIGN SUPPORT

In addition to the basic graphics and design language, a highly effective tool

provides features that expedite design work. This area addresses general productivity from

an individual designer's viewpoint, excluding graphics and user interface as such, but

recognizing practical aspects of design work with a given tool.

None of the tools comes with a designer's manual on how to carry out whatever

design strategies the tools are built to support. Only AUTO-G had practical tutorial

examples; others had very simple and limited examples. The IDA evaluators gained a

distinct impression, from training and support contacts, that some tool producers have few

personnel with strong experience in design.

Inexperience fosters impractical notions about design, such as: designers should (or

will) create entirely satisfactory specifications, start to finish, without revising or starting

over. None of the tools offers automatic aid for making revisions, such as propagating

revisions from one change point to all affected definitions and diagrams. The views and

both user-defined and automatic version identifiers of AUTO-G, however, are very helpful

in tracking design updates and doing major cut-and-paste revisions. TAGS has time-date "

stamping available to track updates, but its version identifiers apply only when formal

configuration management discipline is invoked. Teamwork provides automatic version

identifiers and time-date stamping. Software Through Pictures provides version control

through an external package. DCDS, perhaps because of a bug, usually will not save

14

UNCLASSIFIED

UNCLASSIFIED

incomplete and therefore syntactically invalid work. Its database translations for moving

from one phase to another pose an added penalty for backing up to a prior design stage.

All of the tools constrain the order of going about the specification effort DCDS is

least flexible, imposing a highly ordered, start to finish method, which is enforced by its
required succession of database translations, as well as the above mentioned bug.

Teamwork and Software Through Pictures, by separating diagramming and text tools,

encourage the traditional DFD approach of going level by level, creating first a correct

diagram, then the data dictionary entries for it. AUTO-G is quite flexible. Naturally

enough, it requires process behavior to be developed top-down, but the designer can easily

move among many processes (if on the same diagram) to develop different aspects or

stages of the design at will. TAGS supports similar freedom, but by its separate tools and

specification forms (e.g., IORTD, IOPT, etc.), encourages a designer to work with one

form at a time.

Inconsistent interpretations of published method or specification semantics was

found on two tools. In TAGS, the Diagnostic Analyzer and the simulation generator

embody different interpretations of the IORL (graphic) language, in some instances, than

the reference manual of the language. IDA believes these are implementation discrepancies

that will be corrected in time. Software Through Pictures allows multiple processes in a

7 context diagram (a clear violation of published DFD dogma). When these are decomposed,

irresolvable numbering conflicts arise between levels, so this permissiveness may lead to

trouble. The tool does not allow external interfaces or entities to be introduced at lower

levels, consistent with dogma. All external interfaces must be defined at the outset on the h

context diagram. For a system as complex as SDI, this forces the top level context diagram

to be extremely cluttered and hard to follow. The interface complexity of a BNMC 3 system
will demand a means of "hiding" the multitude of interfaces, and then progressively

exposing them at successively lower levels of detail. IDA believes that this could easily be

permitted by modifying the diagnostic checker of the tool.

3.6 DESIGN VALIDATION AND SIMULATION

Designers of complex systems need both static and dynamic validation aids from a *

tool. Static validation ensures completeness and integrity of a design as a whole, so that
the parts match as defined and can be used for further automated processing, such as PDL

15 "r.

UNCLASSIFIED

- .- W

UNCLASSIFIED

or code generation. Dynamic testing or simulation permits the designer to review the
expected behavior of the system in operation. Dynamic testing also should be supported

even when a design is incomplete, so long as some minimum specification has been done.

The TAGS simulation capability, which supports simulation at any IORTD level,

demonstrates this, as do other specification tools not evaluated here [Zave]. (This is

provided in SADMT, for example, through the parent or non-leaf processes.) ..

The static validation provided by the tools basically involves completeness checks

of individual diagrams, consistency checks between diagrams at different levels

(balancing), and cross checking diagrams and associated tables where appropriate.

Software Through Pictures had a diagnostic limitation in the version IDA used, in that no

checking of control tables was done. This has been added in the current version. A

noteworthy difference is how errors are presented. AUTO-G, for example, places error
messages on the diagram. proximate to the error, which makes diagnosis especially

convenient. TAGS provides a separate error listing, but keyed to the diagram by reference

numbers automatically added by TAGS. Software Through Pictures provides a separate
listing identifying erroneous elements by the labels, if any, on a data flow diagram.

Unlabeled or hidden ones may be extremely difficult to locate. Appendix B notes that for I

one type of diagram, error messages refer to "lines", which are not elements of the
diagram. Teamwork provides a separate error listing also, identifying errors by the context

in which they appear on the diagram. IDA had no difficulties in locating errors using

Teamwork's listing.

At this time, TAGS is the only tool that provides for simulation of a designed %
system (not exercised by IDA). The simulation involves Ada code generated on the Apollo

workstation from a design database that passes the static diagnostics. The simulation is '%

performed under an accompanying simulation environment on a VAX computer. TAGS

simulation can be done for any valid TAGS design, and at alternative specification levels .r

(F 'TDs) without having a fully completed design. The user must provide the simulated

in, t, either by interactive input during a simulation run, by data file access, or by ,

additional simulation code representing the system environment.

DCDS will have a similar simulation approach on its VAX implementation. AUTO-

G developers state that they are working on AUTO-X, a simulation package to accompany

AUTO-G. Cadre is working toward a token based simulation aid for Teamwork by which
I

16

UNCLASSIFIED

UNCLASSIFIED

the designer can check the expected behavior of the system model in a flow and activation

sense.

SADMT is an avenue to overcome such tool limitations and to achieve a simulation

environment [Cohen] that can be controlled by the Strategic Defense Initiative Organization

for objective and uniform assessment of contractors' BM/C 3 designs.

3.7 SCALE OF DESIGNED SYSTEM

Because the SDI BM/C 3 will be a large and complex design, a crucial question is

whether any tool "breaks" (e. g. crashes, runs out of space, or enters some excessively

degraded performance mode) as the designed system evolves to its full scale (say, many

hundreds of objects, data flows, and decomposition levels). The IDA design exercise was

not carried forward sufficiently to answer this, so present users will be contacted regarding
their practical project experiences in the near future. This aspect, among others, will be 0

covered in a follow-on report by IDA in 1988.

3.8 EXTENSIBILITY AND ADAPTABILITY

The capability to alter or extend tool functions and design semantics is important for

SDI, for several reasons. First, the SDI scale and complexity, and the interests and

technical knowledge of different reviewers, call for a means to easily produce non-standard

reports on a system design. For similar reasons, new design icons and corresponding

extensions of tool semantics, may be important to enhance the graphics and depict the many

distinctive attributes of a BM/C 3 system. Also, SDIO is fostering a System Description

Language [SRS] employing various graphic presentations that are seldom found all ,.

together in available tools.

These requirements imply the following capabilities: access to the tool's database,

to add new design attributes and to link in user-written code for processing; access to an
icon editor or the tool's display generator, to add new graphic forms; triggers or other
means to have user-added functions controlled from the standard tool operations, such as

diagnostic checking.

No tool provides all these capabilities. Interactive Development Environments

emphasizes its "open architecture" for Software Through Pictures, and already provides

0

17

UNCLASSIFIED

lei ' V7 ~ - ' K*r ~ ~

UNCLASSIFIED

substantial information on its underlying database structure. User-written programs can be
used readily with Software Through Pictures. In particular, user-written diagnostics can be

triggered from the tool's standard diagnostic operation. A wide range of adaptation also is
provided through the ToolInfo file that tailors Software Through Pictures to a user's

preferences. PICture, a general drawing tool with predefined icons, is available, but this is
not the same as the desired icon editor;, only limited tailoring of PIC's icons is available. I

Cadre Technologies already provides its Access tool for user-written code to access
the Teamwork design database. More development toward an open architecture for . :

Teamwork is forthcoming in releases planned for 1988. A Graphic Notes editor, released

with the newest Teamwork version, provides for free-form graphic annotations on

diagrams.

TAGS and AUTO-G developers also provide access to their tool database for users
who require it, through user-written programs.

DCDS is the only tool that explicitly provides for user-authored design attributes ..

within the specification language. Its QUERY facility also supports user-written validation

procedures and reports.

3.9 TEAM DESIGN SUPPORT

BM/C 3 is sufficiently complex that multiple designers must work together '

concurrently, rather than one at a time using just one database. The tools differ

significantly in their mechanisms to support multiple designer teams. An ideal approach is "-

not easily identified, because project scheduling and management enter the picture beside

the more technical matters of protection, coordination, and integration of design content.

Protection involves shared, but protected access to parts of a system under design

by different designers. Designers will need to view or 'read' others' work, to see system .7..

parts or decompositions that affect their own assignments. For both design and database
integrity, only one designer may update a working design at one time. Read-only and ,

read/write protection of distinct design objects are essential.

Coordination involves the control of design tasks for mutual consistency, so that

their results can be integrated afterward into a self-consistent, composite system design. "

I

18

UNCLASSIFIED

Lvl"' '--

%

UNCLASSIFIED

Integration involves tool mechanisms that aid this bringing together of results accomplished

by different people at different times into one complete system description.

All the tools use protection mechanisms provided by a host operating system, if m

only to authorize individuals to use the tool. TAGS and Software Through Pictures

provide additional access control on design files, allowing read-only or read/write

permission to be granted to named individuals for separate system parts. (The applicable

"parts" depend on the tool's design semantics.) Teamwork provides read-only and

read/write locks, but they are not restricted to specified users. Authorization capability is

being added to a future release. AUTO-G relies on Unix operating system protection,

supplemented by manual actions of a design administrator. Because of Unix limitations

relative to AUTO-G requirements, the design administrator must transfer working copies to

other designers. Because of its strictly sequential design method and associated database

translations, DCDS does not support concurrent design effort. Basic access protection, if

any, would be provided by its host operating system.

Another important need is configuration management, such as TAGS alone

provides among these tools. As top levels of a system are developed and approved, they

may be placed under formal configuration control within TAGS. Further design, to 0

develop lower levels of detail, references the controlled baseline. Any required revision of

the baseline, revealed by the further design, is handled by the formal CM method, wherein

the impact across the project can be assessed. Other configuration management tools might

be used however, working from tool database information extracted by interface programs.

This has been done with Teamwork and STP. Whether done formally with tool support,
or informally by a design administrator, CM is crucial to coordination of team efforts.

None of the tools has features that fully automate integratinp' separate designer

contributions into a composite system. The basic copy, edit, and diagnostic features must .

be invoked manually by an administrator or design manager, in steps that assemble the .
pieces into a whole and resolve inconsistencies that may slip through prior design .-

coordination. TAGS has a MERGE LIBRARY tool in its Analysis Library package which

performs the merge of different system components from other geographical locations into ... 0

one database. Teamwork has a similar tool. Those with read-only and read/write locks
(TAGS, STP, Teamwork), and multiple workstation access to a central design database, in

principle avoid having separate products from different designers. Provided the locks are

19

UNCLASSIFIED

UNCLASSIFIED

used judiciously (are not held for long periods), integration is done in place on a single --

database that all designers access, contributing their individual parts. Administrative

control of different versions and baselining (CM) is still essential.

None of the tools has project management support, as would be useful for planning

and scheduling multiple designer assignments, or providing other management assistance

or reports such as estimation and designer time accounting. Teamwork has a limited

facility to enter such information as status annotations on design objects, but users may
want to provide their own reporting software to extract or summarize selected data.

S Ile

* d.

20

UNCLASSIFIED

%p

UNCLASSIFIED

tA
4.0 CONCLUSIONS

The IDA exercise has confirmed the usability of these tools, excluding DCDS, for
graphic design. It also has highlighted substantial differences among them, across their
range of capabilities. In the opinion of IDA evaluators, none of them now provides the full
set of capabilities that the SDI program needs.

At this time, TAGS, AUTO-G, and DCDS have greater potential and capabilities in
areas most pertinent to SDI specification requirements. In particular, these three provide
for timing specification, and for fully defining the behavior of processes. Also, AUTO-G
now generates the SADMT representation automatically; TAGS is planned to have this
capability in 1988. TAGS has stronger capabilities to support team design, such as
configuration management and read/write locking of design parts. TAGS also has its own
stand-alone simulation facility; DCDS has simulation in its November, 1987 VAX version,
not covered in this report.

Major enhancements are underway for most, if not all of these tools, so present
comparisons will change in the months ahead. This evaluation has not covered present
user experience thoroughly, and important new experience will emerge from use of these
tools by present SDIO contractors in the next few months. Also, IDA did not attempt to
stress the tools in terms of design size or complexity. Contractor experience will be of
interest on this important issue also. This report is therefore an initial assessment, that will
be pursued toward a more substantive recommendation to SDIO in 1988.

vJ.

21 ,.,S.

UNCLASSIFIED

w. ~ '-. - -' *- ~ V [...- a -'-- .C- i i

UNCLASSIFIED

REFERENCES

Chen, Peter, Principles of Database Design, Prentice Hall, Englewood Cliffs, NJ, 1985,
pp. 174-2 10, Chapter 5.

Chludzinski, John, A Comparison of Process Design/Description Languages, IDA Paper, h

forthcoming.

Cohen, Howard, et al., SDI Architecture Dataflow Modeling Technique (SADMT)
Simulation Framework IDA Paper P-2036 (Draft), 17 August 1987.

DeMarco, Tom, Structured Analysis and System Specifications, Yourdon Press, New ,

York, 1978.

Gane, C. and Sarson, T., Structured Systems Analysis: Tools and Techniques,
Prentice-Hall, 1979.

Hatley, Derek, "A Structured Analysis Method for Large, Real-Time Systems," Technical
Report, Lear Siegler Inc., Instrument Division, Grand Rapids, MI, November 1983.

Heystek, Deborah, Proceedings of the Strategic Defense Initiative Organization (SDIO) -

TolFair IDA Memorandum Report (Draft), March 1987.

Linn, Cathy Jo, et al., Strategic Defense Initiative Ada Process Description Language
Version 1. IDA Paper P-1983, March 1987.

Page-Jones, M., The Practical Guide to Structured Systems Design, Yourdon Press, New ."

York, 1980. .

SRS Technologies, Inc., Strategic Defense Initiative System Description Language .

Speification Version 2 Draft for CommenL 9 July 1987.

Ward, P. and Mellor, S., Structured Development for Real-Time Systems, (2 Vols.) -
Yourdon Press, 1985. S

Zave, Pamela, "An Operational Approach to Requirements Specification for Embedded
Systems," IEEE Trans. Software Engineering, 250-269, May 1982.

22
-

UNCLASSIFIED

V, PIP

UNCLASSIFIED

Appendix A. Tool Summaries

CONTENTS

TAGS A-2,

AUTO-G A-19

DCDS A-26

Software Through Pictures A-30

Teamwork A-43

A-1

UNCLASSIFIED.5, ,.-

UNCLASSIFIED

Technology for the Automated Generation of Systems: t

TAGS 4

of

Teledyne Brown Engineering

TAGS consists of a set of modules that together allow the user to define, analyze,

and simulate running of a new system. A system under design, though generally electro-
mechanical, normally contains an information subsystem as an important part, and this is

the prime part that is usually simulated in its operation. Major components of TAGS are:

a. The Input/Output Requirements Language (IORL). This is the graphical 4
system design language which allows the user to draw block diagrams of the
system to be specified, then document the modules and link to other parts of
the system.

b. The Diagnostic Analyzer (DA).

c. The simulation system, with the simulation compiler.

TAGS was developed by Teledyne Brown Engineering as part of their Technology X

for the Automated Generation of Systems (TAGS). At the highest level of design, IORL
supports the decomposition of a system into Schematic Block Diagrams (SBD) which use

"black boxes" and connectors to symbolize the system's components (processes) and
communication between components. Data passed between components are specified
(typed) in 1/0 Parameter Tables. The algorithmic logic that corresponds to an individual

component is formally specified in an 1/0 Requirements and Timing Diagram (IORTD).

Using TAGS, a designer may choose to start with a two-component universe:
the system and its environment. Thus, with a Schematic Block Diagram, the system
designer first gives a black box description of the system (Figure 1). The components of

this block diagram may then be decomposed into further SBDs, as shown in Figure 2,
where the INFOSYSTEM block of Figure 1 is decomposed. The match to inputs and
outputs at the higher level is shown through dashed lines at the lower level (the TAGS
system requires the specifier to do this, though the analyzer will later check for

consistency). As an alternative to decomposition, the required functionality may instead be
defined using an I/O Requirements and Timing Diagram (IORTD), as shown in Figure 3.

-a

A-2

UNCLASSIFIED
77.

UNCLASSIFIED

I,,-

(4 6

w

--

LL w

w ,'w

0 0.0

(r

00
(rn

~j N

W>
o

o

A-3UI

z M
NLW

Fiur IL - cemtc lckDaremU(oLvl

A-3~

N -W
it~

UNCLASSIFIED

. -4

o Go

-a-W

Ww

UU

W z

00

00

>a U
2 0

CCL

Lfl Z . ,

0, >-4
t2 0
z -a o

UNCzSSFIE

I.- I . Otf

w U,

W--- -- - 4D -...... . . .0

2>

'-4 wl w

r(

IA-4

UNCLASS0FI0

UNCLASSIFIED

ww

'W
0U

w

U,

IJ-

U

o .

A-54

UNCLASSIFIE

UNCLASSIFIED

In this example, the definition of the algorithmic logic for a particular component of the

ELEVA box is provided, using two procedure calls: INTBUTTON_REQUEST and

BUSHANDLER. Communication parameters between components is specified in an I/O
Parameter Table (IOPT), as shown in Figure 4, where the line INFOSYSTEM--32 of

Figure 2 is specified. Parameters in these tables may be grouped so that components may

transmit groups of parameters.

Components defined by an IORTD are processes. These processes communicate '-

via synchronous "call", "listen", "send", and "receive" events. For a process to send a

message it must first call the process with which it is to communicate. The corresponding .'

process must be listening to receive the call. A "call" is a continuous event and begins at a

specified time; similarly, the "listen" event is continuous and begins at a specified time, but

unlike the "call" event it only lasts for a specified duration. Once a process detects a call

from another process it begins sending the specific information. Consequently, the two

events must overlap in time for the message to be sent. The macro (MAC- 11) of Figure 5
illustrates this; it is used in the Predefined Process Diagram (PPD) of Figure 6, which is the
procedure definition corresponding to the BUSHANDLER used in Figure 3. The IORL
includes facilities for the definition of data types and operators; examples of the definition

of the data used in the BUSHANDLER procedure are shown in the Input Parameter Table t
(IPT) of Figure 7. "

TAGS allows the use of traditional mathematical notation, as shown in the

subscripting of Figure 6, but it makes no special provisions to specify the underlying

execution environment. Teledyne Brown Engineering believes that TAGS is capable of

describing hardware systems. However, there is no specification capability to explicitly
allocate logical processes (software) to hardware resources.

In IORL, timing requirements are defined in terms of I/O events. Processing and

decision logic must occur between the time of the last I/O event and the time of the next I/O

event in the control path. Delays may easily be built-in and time tags (internal variables) ,

may be included in the description.

The Diagnostic Analyzer (DA) has three stages, which perform syntactic and

semantic analysis, validating the complete specification. Examples from runs of the DA are .

shown in Figure 8. Provided that the system passed the DA without serious errors, a set of ,.

diagnostic and system analysis reports will be automatically generated; these include a

variety of hierarchical charts, and are shown on page A-12.

A-6

UNCLASSIFIED

UNCLASSIFIED

r
w w

UU,

I-
-V4

w 0.U 0

(z 0 N
'cm 10 cnM

-:, 0 i Itfl

'0I

I z I x z 0 0 1 U. 0 I
U > > 0 0 >

0 ix. "llUW w wu 0U 0 (0- ow x CCZ w 00.0 w0f

-4

Lfl

1.zIn -J .
Nl U

-jI

0 0 w z c

U roW

mI '0 z
U > -j (r

CC W-ce U.U. c

UNCLASSIFIE
>- cc

Figue 4- 10 Paameer abl

~ ~ 7,~ *(E P~j.~ ~ fA-7

UNCLASSIFIED

cov

-- 3

0

- .

M -

0 a

--.

wo

" wwu a;; 0

U,

ULF,
(r

U.

0

>- cc

fl r

A-8.
UNCLASSIFIE

M"WOMMILMM X-) 4- V .17V

UNCLASSIFIED 4

N,

-4

0 L0

.

U),

>- x

LL~~ ~ ~ ~ WnUI--)

ww'
UU

x~ U

01S

z w.
W l r

w Uw
> 7S;

ce -- - - --

Fiur 6c >- PrdfndPoesDiga sn A-
0. tA w

Za -C - w
-

UNCLASSIFIED J

$:~

'-4 cI

Z 5-4

UJ 0.0

z -

-j WA

C4As
4

w 0-
.Aj0.

> 0 z0 c

- - a .0:" *

0. 0 w cc a.- N U. .- a

e-%
p

s 0 cc

X-.i-i ~ ~ ~ c o.I4 U ~ i . ,.en . .W CI zW1*
* 0A -~~~ .

L IN. N i M N U 0c

0 N 0 0 0.
N Ni i x U w a:

X 0 'D 0. 0
CL r- 1- U.

A- 10

UNCLASSIFIE

%.. *j

-h' -J*?A A

UNCLASSIFIED

ROW aftTS. PAL SIwo

Vim 10,13

13 S &A ,W ,ots ~.f- *_WeWW Iria .WAfess .Is %MUP
" * g sowr soo,moi; -o we WO or PM. IL-4

11511 2 M6Uo e,.iio his MIR do .~ ' ifted dw . offaa1~oeJf-92
cla . O?-a704 mat" =10S.3 M, 3 JIMM. 6

13M 5 1A q~ .1n ~soo &..n~W~ for as aW~fm fWa to -s VIM

" W. = qiwf.. m o o. ZUYS 0. a~ - pp*LY64

C Y.... - WYLI. we MOIG&~ tOW hi . IVM

OIMM. MLnTh.II 11olk 101MID- PI. A 204111. &jmns

a. M U0111 RM I p"
=81M . .DLA NClI U NW 10011~. & .W v 9t aps

O1D4m IIASU IW~'.sa Wvil "a.. I,.. WLMiaUW

. vo 0 o~l .D~ VI"40- " -

OOMMW L M M WfI Pow I C5'.

711111111 ~ Utt %v ID . C e - a.Gs

V A i," #I.". (?II

GMMM s~..a , we sI44av W.,% 101...5 12

o"1101. AJ' - AAD. IV-

Onm IVw. .aw

"IMI
Fiur 8 04fs- Lstfoi^ U from Dagosc Analyzer

14311 11 o oss 5..o.

~~~~%.1M a" Nzck . . ; *C . 5 .* ..



UNCLASSIFIED

The Page Audit listing; an inventory of the system, with the date that each
part was originally input or last changed (Figurc 9).

The SBD lattice; the hierarchy of the SBDs (Figure 10).

The Data Dictionary, with lists the variables alphabetically, where defined,
their type, and where used (Figure 11).

The Flow Analysis listing, which gives the relationships of input and
outputs for each interface group (Figure 12). ..

The PPD Cross Reference log, which gives a list of all calls to and from
procedures (Figure 13).

S

The simulation compiler translates IORL system code into Ada. The portion to be
simulated (various levels may be selected) is termed a Blueprint (see a listing in Figure 14).

The Ada generated is provided only for simulation purposes.

%I

OZ

A1

UNCLASSIFIED



K- -7N-~- 6L 7.4 0. K. T 1- -7 ITT

UNCLASSIFIED

Page Audit for System

Docuent Issue section Page Class Date
1 DEL D IOPT-12 1 27-Jul-87
2 DEL D IOP2T-21 1. 31-Jul-87
3 DEL D IOPT-21 2 31-Jul-87
4 DEL D MAC-l1 1 20-Jul-87
5 DEL D MAC-12 1 20-Jul-87
6 DEL D SBD 1 20-Jul-87
7 ENVIRON4MENT D IOPT-11 1 24-Jul-87
8 ENVIRONMENT D IOPT-222 1 24-Jul-87
9 EN4VIRONMlENT D IOPT-36 1 24-Jul-87
10 EN4VIROtNMENT - D IOPT-555 1 27-Jul-87

11 Evf§&k D --- - i~of-:77-. 31--!iJul-87
12 ENVIRONENT D IORTD-6 124-Jul-87
13 EVIRONMENT D IORTD-7 124-Jul-S 7

14 ENVIRONIMENT D IORTD-77 127-Jul-87
is ENVIROtNMENT D IPT-6 124-Jul-87
16 ENVIRONMENT D PP1D-1 I 24-Jul-87
17 ENVIRONMENT D PPD'-11 1 28-Jul-87
18 EN4VIRONMNT D PPT-li 1 24-Jul-87
19 EN4VIRONMNT D SWD I 31-Jul-87
20 E(T-BuT?-ASH D IOPT-12 1 24-Jul-87
21 EX_UrT?_PUSH D IORTD-1 1 20-Jul-87
22 E(_PUTT?_PUSH D IORTD2 1 24-Jul-87
23 EXT9TPUSH D IPT-2 1 24-Jul-87
24 ETBAUTTPUSH D PPD-l 1 24-Jul-879
25 ETBtZT PUH D PPD'-2 1 24-Jul-87
26 EX(TAtT.)USH D PPT-1 1 24-Jul-87
27 EK(TBUITPUSH D PPT-2 1 24-Jul-87

f28 !E(TBUT?_PUSH D SBD 1 24-Jul-87 '
29 1INOS YSTim D IOPT-23 1 21-Jul-S

7 %

30 INFO SYSTEM~ D IOPT-32 1 31-Jul-87
31 INFO SYSTEM D IORTD-2 130-Jul-87
32 INFO sism~ D IORTD-3 127-Jul-87
33 INF0_SYS TDI D IPT-2 131-Jul-87
34 INFOSYSTEM D PPD-1 131-Jul-87
35 INFOSYSTEM D PPD101 1 31-Jul-87
36 INFP SYSTEM D PPD-12 130-Jul-87
37 INFSYSTEMI D PPD-13 130-Jul-87
38 INFO SYSTEM D PPD-2 131-Jul-87
39 INFOSYSTM D PPD-20 131-Jul-87
40 INFOSYS TEM D PPD-30 122-Jul-87

S,41 INFOJSYSTEM D PPT-101 131-Jul-87
42 INFOSYSTEM D PPT-12 131-Jul-87
43 IN!VSysTEM D PPT-13 131-Jul-87
44 INFO_$YSTEM D PPT-20 131-Jul-87
45 IfiFOSYSTEM D PT-30 1 22-Jul-87

I 24--Jul-87

Figure 9 - Page Audit for Complete Design

A- 13
UNCLASSIFIED



UNCLASSIFIED

AUDIT LISTIIol

SYSTM, DEE
DATE: 31-Jul-87

SBD LATTICE

E4VIRCOM~Y
SUP_ ULT
SUPERVISOR

BUS TRORS

EXT_A=r TGEN€
E T 1 T - T ZJ3ChE 4

I _tLRCALLS
~..JfAULT
INT BUT-AULT
INwrUTTJ"JsH

INTI.UT] GEN
I~fURSALL.S

~EEFAULT
ELEvSAIM

INFO SYSTEM '
ELEVACOMM-CONTROL -

ORPHAN SBOs

No Orphans Found

Page Audit for System

Document Issue Section Pae Class Date
DEE D IOPT-12 1 27-Jul-87

2 DE IOPT-21 1 31-Jul-87
3 DEL D IOPT-21 2 31-Jul-87
4 DEL D MAC-11 . 20-Jul-87
5 DEL N AC-12 1 20-Jul-87
6 DE D SBD 1 20-Jul-87
7 ENVIRONMENT D 1OPT-111 1 24-Jul-87 _
8 ENVIRONMNT D 1OPT-222 1 24-Jul-87
9 ENVIRONMET D IOT-36 1 24-Jul-87

Figure 10 - SBD Lattice

A-14

UNCLASSIFIED

i. -.I



in -- vn PUt -~o

UNCLASSIFIED

OTA.GICTZDOW LZSTIJG
Gate. 31-JuI-&'

010104mY TYPE *. L 'W Ft-I OES
OR INVTECWG4 TYKf. FULL. SYSTEM

SYS181 aE

VFM& IRf EDE ORTA TYE F4 W I BY

(INFO.-SYST&D PPT-30 DrNTGE VFIOE CDFO-SYSWI) PPO-U a

Odir CDFO..SVSTEM) IPT-2 STRING VFdF- CDNFO-SYSTE) PPD-12 13 28

(EIROIDIT) IOPT-111 STRI2 G 'VFEE aWt.J~fT.Pk18) IOTO-2
CSCNdZROEBIT) ZWT-22 STRING YPRFE CEXfT..hJTT.AB.) XRTD-2
(EI(TAJTT.ABIH) ZOPT-12 STIRDG WFIFS..E

*trin CeC3ITTAO IP-2 STRING WRFL S1.aA ) 1O-2 PP-12
CrNT..flrr.ABO IPT-2 SfRD4, wRZBL (ZU?.3JTt99H> IO~t-2 PPO-1 2

&4,d-(DL) ICPT-12 SrRIM WRXI...E (ENlqRIN~T) PP-1
CP#FO.SYSTDI) 2 12 13

.czFO..SYSTEM) IOPT-32 Si~txC WF~FME

(I.WUO-SYSTEM) PPT-101 STRING VWFIPS..E (IF*USYSTO ) PPO-l81

0.(INFO-SYSTEM) PT-29 STR~tG WWIA CIPO-SYSTE1) FP-29 a

Us$i I..tabl (ITFO.SSTEM) ZPT-2 L=ZCR. VMWI-E (X1FO.SYSTEM) PP-1 2 12 13 30

CSUPER(IWO.ISTD ICT1 2ICLSW&

(rNCIFDOSISTEM) PT2 L=CFVL VFIF0L CINFO.-SYSTEM) PPO-2 2

CENVIRO14MNT) IP-6 LO=CF. V1RIFMLE C9.PUVX37Nlf) IRT-

CIW-SYL) M ICPT-2 LMICF4. VMFOE (W-Y~l P 22

COEP T-m LEOCL VM~FOX

Greboot COE) XOPT-21 LOWR. VFVUS.*

(D$OSYSTEJ1I IPT-2 L=CR.- VMS.E hOSTV)-2

.0

Figure I1I - Data Dictionary Listing,
IDa

A-i1s6
UNCLASSIFIED

A-p



UNCLASSIFIED

-44

p. f- 4 N

eq C4'4

i r - A Lsi ....a,

i I cq11I
.41 14- --.1-.

UNCLASSIFIED' - -,. D-- -- -- ' --

Iin,

aaa1 p.4 %a14A

Og -aa.01 101 1 il 11m

116 :4 N -

.4 N 4 N N N_- ~i

Figure..N 12-Fo nlyi itn

44Nri'f~~ 4 4 N N N

N N N 4 -16--IIIUI 20~1

UNCLASSIFIE



UNCLASSIFIED •

N

.1

V1.

4A4

° iI

i i i1
,o . -; " i g u e 1 - P D r o s R f e r n c e L i s i n

' A-17

U N C L S S I I E D 
,'



UNCLASSIFIED

4
4
4
4
4

4 ('4
44 -

4
4
4 I'-
4 0

4 
~

4 I444 -
4

44

£

4 
4fl*** ('4 -4

* 4 14
4 -4
4 

4.4.---..

4 
s4~

4

4
4 - 0 ~ ~
444 

=
4

44

4 -4

44 ~ v
$

~ *-4

* I! I y
4
4
4
4

4 etcr1
44 -4

4 14

44 
-

4

4
4
4

I-El
44
44 

4'

4
4
4
4
4

4
4 r~i 

'-4

444 
~n1

'A. 44
4 

4

4

~ 444444444444444 
444444£444444 

444444444

Figure 14- Simulation Blueprint Listing

A-18

UNCLASSIFIED

-. 4--a-,' 
4'



UNCLASSIFIED

Auto-G
by

Advanced System Architectures

Auto-G is a computer-aided design system produced by Advanced System

Architectures, Ltd. of the United Kingdom. Auto-G supports both G, a graphical

language, and T, a textual language, for capturing system designs. G is isomorphic to T

and both include all the capabilities of a general purpose programming language. The

system was first delivered in May, 1986, and is being used in aerospace,
telecommunications, and C3 applications. For the pupose of evaluating Auto-G, IDA used

the system hosted on a Sun-3 workstation.

The top level concepts are "documents" and asynchronous processes. A system's

design is decomposed into a set of documents, which in turn may be decomposed into

documents. The terminal or leaf documents contain the formal specifications of one or 0

more of the system's asynchronous processes. Figure 1 shows the AUTO-G display
window with a top view of the elevator control system, decomposed as a document tree.

In Auto-G, system design is represented as a hierarchy of processes. A process is

modelled as an "action network" or state transition diagram. The flow of control through I..

the network defines the process behavior. Nodes in the network represent states of the

process and are either waiting or intermediate nodes. A waiting node awaits receipt of a

signal which determines the subsequent branch flow of a process. An intermediate node is

a pause for evaluating a conditional expression which determines subsequent branch flow.

Transitions between nodes define a series of actions. The actions could be a sequence of

assignment statements, the sending of a signal, etc. A network corresponding to a process

has one entry node or initialization, and no exit nodes, because processes are never-ending.

Figure 2 shows the action network for the supervisor control panel (superpanel).

Processes communicate by sending and receiving signals, which are packets of

typed information. Signals are sent asynchronously and are queued for processing. The .- .,'.

interface of each process explicitly defines the set of signal types the process is capable of

sending or recieving. A signal is valid only if the signal type is included is the process

interface. A process will receive a signal only when it is in a waiting node, and the receipt

will start the transition to the next node in the action network. If a signal is delivered to a

A-19

UNCLASSIFIED



UNCLASSIFIED

MWJ

U-I

...........

300

0...3

IN

Figure 1 - Editing window with displayed document tree

UNCL VIFIE I
)I.

- °.'' ,",' " ",L~i. ' "L V ~ .'.V V \ %- ''



UNCLASSIFIED

00

020

01~. -0.*S

444)

0)

Figure 2 - Process description for onboard controller, with hidden parts

A-21

UNCLASSIFIED

.... ...... ~



UNCLASSIFIED

process at a waiting node where the signal is not expected, the signal is discarded. Signals
may carry a priority, which affects the relative order of their acceptance by a receiving

process.

Using G, the system designer specifies communication with a process's external
environment with an "environment list". External objects being read from and/or written
to, external signals being sent or received, and external procedures being called are
specified in the environment list. The environment list appears on the top level box of the
process, as signal identifiers with formal declarations separable into an interface document,

as in Figure 3.

Timing and timing constraints are defined in one of two ways. The first way is to
specify that a signal sent from a process must not be received until an absolute time (for
example, on January 1st, 1988 at 1:00 pm) or a relatively specified time (for example, until
3 seconds has elapsed since sending or receiving a signal).

The second way is to specify that a process waits for one of a number (possibly

zero) of specified (types of) signals to arrive and if no such signal arrives within an
absolutely or relatively specified time, a specified action is taken.

The first type is typically used to represent periodically repeated functions; whereas

the second is typically used to represent constraints. In Figure 4, the action networks for
the supervisor control buttons (elevssupervisor) and the passenger request buttons
(passenger req) processes specify a random time (random minutes) to wait before sending

the signals, newstatus and stop req respectively.

G makes no special provisions for specifying the architecture or hardware of the

underlying execution environment for a designed system. G itself could be used as a
hardware description language. However, there are no mechanisms for tying the hardware
so described to a software system also described in G; i.e., to assign software units or

objects to hardware components.

The environment ASA provides for "growing" G-trees (AUTO-G) is adequate
(although wearing). Figure 5 provides an example of an icon menu used by the designer
for generated trees. Currently, ASA is developing support within the AUTO-G

environment for simulation of designs in G or T hosted on the SofChip Processor (ASA's
proprietary multi-processor architecture). Further, ASA is finishing work on G-to-

SADMT and G-to-C translators; the Rogel Military College is developing a G-to-Ada
translator under ASA's auspices (anticipated for early 1988).

A-22

UNCLASSIFIED

. .".-; ;' ' i..i,,i ,v -,,,, ,, -- .?€ €'



UNCLASSIFIED

---- --------- - ,

aa

;... .......

2.5

- 00A

0.-

l- t, .. ..

l

Ott Vv,,-.:

Figure 3 - Process environment list

A-23

UNCLASSIFIED ,,",.

U'.
," ." . ,'



UNCLASSIFIED

1SxV *l

0 CIL to

NO 0

C C

00~
2-v

06

U 0

C~

140-

Figure~4 4~ - nefcVocmn otn

A-246

UNCLASSIFIE



UNCLASSIFIED

...... .. . .

w% %

J.-

° g.---

Fiur -. ,c

A-25-

UNCLASSIFIED.
at' .",,

' Figure 5 - Timer icons

A-25 ,

UNCLASSIFIED

4' "
.ot .-. ,r ,- . l a.- \. ' ' m. a' 4 a a.... . % . . . ' . " . ," , , '- , . . / ./: ' . F %.' .. .. " "., ',, -. '.. ,, ": "',, ." ' .''" ". ," .



UNCLASSIFIED

Distributed Computer Design System: DCDS

(TRW and U.S. Army Strategic Defense Command)

DCDS (Distributed Computing Design System) was developed by TRW under

contract with the U. S. Army Strategic Defense Command. The primary purpose of DCDS

is to develop complete and consistent requirements to provide a foundation for systems

development. DCDS has behind it approximately twelve years of development and use on

defense projects, dating back to the original SREM system. Two versions of DCDS are

being used at this time: a Pascal language version which is being phased out, and an Ada

language version which is being beta-tested on the VAX 8600 and the IBM PC-AT. In

addition, TRW is developing a simulator to support the first stage of the system

development cycle (i.e., System Requirements Engineering Method) based on generated

Ada.

DCDS embodies five different design methods and five corresponding design

languages:

1) System Requirements Engineering Method SSL - System Engineering Language, -

defines systems and their function. I

2) Software Requirements Engineering Method RSL - Software Requirements

Engineering Language, defines

requirements of S/W.

3) Distributed Design Method DDL - Distributed Design Language,

defines architecture of H/W and S/W.

4) Module Development Method MDL - Module Development Language,
defines units of program code.

5) Test Support Method TSL - Test Support Language, for

testing.

A-26

UNCLASSIFIED

%".



* A~.~ ~- ~* -1- -C

UNCLASSIFIED

Each of these methods views the system at a different level of detail. Currently,

DCDS supports textual versions of all the languages, but System Specification Language

(SSL) and Requirements Specification Language (RSL) are the only languages that have

graphics editors.

In DCDS, the designer first names the system and its subsystems, and then uses

Functional Networks (F_nets) to define a functional model of the system. This

decomposition defines a hierarchy of functions and is done using the System Requirements

Engineering Method (SYSREM). The designer formally defines the system as the top level
function within a Fnet. An Fnet is used to define the decomposition of a function into

sub-functions.

At the next stage of design, using Software Requirements Engineering Method

(SREM), the designer works from the Input Interfaces of the primitive functions within the N
F net which manipulate data. For each such Input Interface, the designer will define a -

Requirement Network (R_net). An Rnet is a directed graph defining the flow of control

between Alphas (small grain functions) and specifies the system response to events and ,

input messages. Rnets also specify the production of output messages. Inputs and

outputs defined in the Rnet must be consistent with the Input Interface and Output

Interface for the corresponding function of the F net.

Each Rnet defines a separate thread of control and hence, a process. Rnets

communicate via shared data, that is, variables, files, and so on. An underlying operating

system is assumed to manage this process. Using the Distributed Design Method (DDM),

the designer will "cluster" Alphas from different R nets into single processes for optimal

hardware assignments.
0

* .-.,ira

Input and outpu, data are defined with Item Networks (Inets). These networks are " ,

used to represent the time sequence and arrangement of data (items).

At the SREM level, the designer can use Assertion Nodes within Inets to specify -

boolean expressions relating items in the network. The Assertion is evaluated in the *"-*

context of the related F net and an exception is raised if the boolean expression is false.

A-27 .. %A

UNCLASSIFIEDPo%

-- -%% °I

'.", ''



UNCLASSIFIED

Timing constraints also may be specified at the SREM level by the use of Validation

Paths. Within the Rnet, the designer may add Validation Point nodes which can be used p

to specify different Validation Paths within the network. Using Performance ,
Requirements, specific timing constraints can be defined for specific paths within the
R_nets. Additionally, DCDS provides the XQT Estimate construct to specify timing
constraints for individual blocks of code.

DDM allows the designer to specify the architecture of the host environment for the

data processing portion of the system. This method includes the specification of the
execution environment from a geographical basis down to a single processor basis. The
hardware design is divided into three levels: Level One is concerned with distributed data
processing over a connected network of geographically separate nodes; Level Two is
concerned with the internal architecture of individual nodes; and Level Three is concerned
with the internal design of computer systems which are based on a common architecture
(i.e., Level Two designs may include different types of processors integrated by a common
network). The designer allocates specific software objects to specific hardware

components.

The principal goal of the DDM is the analysis of Alphas within R nets to arrive at
an optimal "clustering" into Tasks. The primary measure of optimality is the assignment of
Tasks and the data they manipulate to the same processing nodes. Additionally, it is P 4

important to cluster Alphas within the same flow of control (i.e., Rnets) to the Tasks and
hence, the same processing nodes. DCDS Processes manage the execution of Tasks.

Module Development Method (MDM) is used for developing algorithms, and for
defining a detailed design from the requirements and specifications that were developed at
the SSL, RSL, and DDL levels. Units of tested code are produced using the Module
Development Language (MDL).

As soon as a design is completed in a particular language, the design is then
translated into the next language in the design cycle (ie., SSL to RSL, RSL to DDL, and
DDL to MDL).

A-28

UNCLASSIFIED *

2 -,"d j r Z ,j VV. -b" i*_, . .' . .' .- ,'' ." .' " %", ' 4,%



UNCLASSIFIED

Currently, TRW has an environment to support system development using DCDS.
The tools in this environment include: _ I'

- Editors to support the use of a graphical language for designing F nets, Rnets,
and I-nets.

- Editors to enter textual information.

- An editor for changing, adding or deleting an entity, attribute or relations.
- Consistency and completeness checkers.
- A query system to request information about components of the system.

A simulator supporting SYSREM is available as of November 1987. The simulator
will produce an Ada programming language representation of a designed system, for

simulation.

A

I

A-29

UNCLASSIFIED



UNCLASSIFIED

Software Through Pictures

by

Interactive Development Environments, Inc.

Software Through Pictures (abbreviated STP in this report) was used by IDA on

the Sun 3 workstation. Software Through Pictures offers a collection of tools representing

the data flow diagramming methodology espoused by Yourdon, DeMarco, Gane, Sarson,

Ward, Hatley, and other published authors.

IDEtool is the interactive graphical tool that provides the user with a single interface

for accessing and executing all of the tools provided in the STP environment. It utilizes the 15%

windowing system of the host machine, and provides a convenient icon, menu and mouse

system for direct interaction with the user.

When invoked, IDEtool displays a startup window offering the highest level of user

options. Figure 1 shows this window. The available tools include the Data Flow Editor
(DFE), Data Structure Editor (DSE), Transition Diagram Editor (TDE), State Transition

Editor (STE), Entity Relationship Editor (ERE), Structure Chart Editor (SCE), Control

Structure Editor (CSE), and PICture (PCT). Typically, a user selects an editor or

command group, a subcommand and the desired options, then selects the "Execute" button

to cause that command to be executed. If a graphical editor, such as DFE, is chosen, a

separate editor window is created, leaving the IDEtool window available for input of

additional commands. In other cases, a separate program is executed, and the output is

placed in the teletype area at the bottom of the IDEtool window.

Information is entered into the data dictionary (the text part of the design data base)

via the graphical editors or by a Unix text editor of the user's choice. (Diagrams and text 7

are separated in the database.) Each of these can be invoked directly from the startup

window, causing a new window in which the chosen editor can be used to create or edit a

diagram. As with the startup window, each editor window has several regions. A typical

window is shown in Figure 2.

A-30 'S'

UNCLASSIFIED



UNCLASSIFIED

6. c

CL

..~~ .....

0 Is

ow

0 L

L00

0 0 0 0

U-% %

00)

L) 0

0)) aa~- 0

410 --. (* .- U

L

10-0~2' 1 .9

Figure 1 - IDETooI Start-Up Window for STP

A-31

UNCLASSIFIED

ALIS S



UNCLASSIFIED

... ~~, ... .. .. .. ..

I- L Lc c

C-E a

- C -C
.... ...-

............

....... .

......J....~

7 - - - - - - - - - - -

0( 0 0

0X 0.I 3
** Lc

Figure 2 - Composite data flow and control flow diagram in edit mode

of the Data Flow Editor i

A-32

UNCLASSIFIED



UNCLASSIFIED 0

Complexity in design is handled through a hierarchy of diagrams. Graphical

editors allow nodes in a diagram to be decomposed into subdiagrams, which are S
represented as separate diagrams. For example, in the case of Data Flow Diagrams

(DFDs), when the user pushes on a process, IDEtool calls up another window for the

creation or editing of the DFD decomposing this process. Thus a hierarchy of diagrams
can be created. The user moves up and down the hierarchy using the "push" and "pop"

buttons in the control panel. Figure 3 shows the next level decomposition, brought up by
pushing on the process 4 bubble in Figure 2. Note that control flows are dashed lines and
data flows are solid lines. The asterisk inside a process bubble indicates that it isIW

decomposed further. The empty, smaller circles represent source and sink processes on

the parent diagram.

Figures 4 and 5 illustrate two of the alternative means available for formally

defining control flow. Both apply to the control specification bar at the lower left of Figure
3. Figure 4 is a state transition diagram depicting states of the elevator doors and motor, in-,__

response to passenger button pushes and controller commands. Figure 5 depicts the same

information in the form of a table.

One of the command groups, IDE Data Dictionary, allows invocation of a menu-

oriented program that provides information about items stored in a project database.
Although the user can browse the data dictionary using the "Disp Def' button displayed on

the control panel of each graphical editor, the data dictionary program is more convenient

for extended browsing. Figures 6 and 7 illustrate using the Data Dictionary program,

called IDEdd.

The data dictionary program provides the only mechanism currently available for

deleting unwanted data dictionaries.

Figures 8 and 9 depict a data structure diagram drawn with DSE, and an error
listing as reported by the diagram diagnostic checker.

-W
A-33 .,,

UNCLASSIFIED "

-w -~ -. * - ~ -- - -



UNCLASSIFIED

'pN ,

. .... ...... . IN

Aim

I A',

Z [E

A-344
UNCLASSIFIE



UNCLASSIFIED

. ........

434

-- e

Fiue4 ttetasiindiga

%

A-351.~

UNCLASIFIE

-. % ~



UNCLASSIFIED

m P4'

)S

'4L~. o . o ,hL ! .0~1k.7J

Q 4'

......................... € .

........ .. .. . .. .

-. -.

.. ..........

....

.. . .. . .. . ... ... .................. ......

.. /....... . ... ..... . .

A! No

a 0 0 00 00 a c

0o I Q C, za,-
00

S - ~ :4 00 00.00.2 00.0.0.

1=8JU 12 0 ! 6 410 41 4.. 1 0 L1 Z 1 1

0 0 0 0 0 0 0

Fiur- --tt rsto al

.~ ~ 4- 1 C W41 LOW £ C AC-36

- 0 fl C 4 ~ UNCULAOSSIFIED - -

!1. 49k -1. "IX I



UNCLASSIFIED

. . . . . . . .

. .............

0~~~ t-X 04

IV oQ0 OC W.
M 17 n w , w -4ci-

>5

a 
Sc- .

1cl-4

CU
1; ntw

Fiur 6>5ur euo teI~dDt icinr rga

>5% 6%

a- C C-37

tUNCLASSIFIE



1.07 7- r

UNCLASSIFIED

......... 

.

.1

... 
. . . .....

I al

... ... .. .. .. ... . . ... ... .. .. .. .. ..... ... .. . ... .. ... ......... .2

.. .. .. .... ... ... ... ... .. .. . .... .... . . . . ... . ... ... .. . . .. ......

.. ..... .. .. ...... .... .. ...... .
.. . .. . .. ... .. . . ....... . . ..

--- -----

... . .... .........

.. .. . .. .... . .. . ..O. .. . .. . .

.1 .. . . .. .... .. .

.. ... . . . .... .. . ...U . . . . . .. . .

.. . . .. .. ... .. . .. ..
... .. . . ...... .. . . . . .

.. .. .. ...-. . . . . . . . . . . .. . ... . .. .. .. .... ... .. .. ... ............ ...... .
... .2. . . . .. . . .. . . . . . . . ..... . ..

.... ... ..... . .. .... . ... ... . .. . ......

.... .... ........W .....

.... ... ... .... . .... . . . ....

_ _ c o

I~d ~ o c: '

- u 
C

j~~J2 w

U 0 M

[J,, 2

Figure 7 - Query response from IDEdd tool

A-38 . .,

UNCLASSIFIED

P' ~ &'*~~%F ~ ~ ~ - % % - 5* ~ 0



UNCLASSIFIED

• .. ::l.,-.-:'. - -. " ionat

W N

* " o

ig 8 -Daasrcur iga

A [

UNCLASSIFIED..'p ,

C3-

-e %

4*51

Figue 8 Dat stuctue digra

~A-39

UNLSSFE



UNCLASSIFIED

13Cm

&7 CL

.- -.
€''S

0

) '3LL L C00 -% -

0 t> >. - a) C -

am o_ "" _ M_ ... 0J -Z" = ,- ""- 3

t- 0 U L M
C,,

Figure 9 - Error report list~ing from diagram checking

A-40 0

UNCLASSIFIED a ,2

p. -:,. w ' .:.-' -V A -'A./ ,.; v . ., - ,*,, =. '.x.- C.,*' ...'.. . % # ;; *, .- vr,/ F../** . ,.

1 05 a 0 C



UNCLASSIFIED

The PICture editor is somewhat different from the other graphical editors. It

provides a larger set of symbols and more flexibility in connecting those symbols. S
However, since this editor is provided for free-form diagrams, no syntax rules are
associated with diagram elements. PICture diagrams cannot be linked to other types of

diagrams, nor can diagram information be included in the data dictionary. Figure 10 shows

a hardware diagram drawn with PICture.

The STP environment follows an open architecture approach, termed Visible

Connections, with published file formats. The open architecture approach has been

adopted to allow users to customize the tool by modifying the messages, options, and

defaults presented. They can also extend the tool by adding C programs, or by integrating 0

other tools with IDE's.

The ToolInfo file is the central point through which the STP environment may be

customized and extended. It is based on the concept of attribute-value pairs, where a value

is associated with some attribute of a software tool or its environment. Thus the IDE tool

set can be extended by using the defined interfaces to files and databases and/or the

underlying tool information file and its supporting library. Although an installation may
have a single Toollnfo file which all users use, it is common for a separate ToolInfo to be

associated with each project directory, system, or even user. Similarly, multiple

specification files can be used.

A.

= ::',,

A-41

UCASFE'.:.

U NC LASSIFI ED .€.,,

", % 9 ~ % , % % 9 ,. % 9 ~ % '.. % 9 , . % % % . , % ' % • "



UNCLASSIFIED

F

o j--

.. p.. ".

0, a C 0 O

C4.

19.

Figure 10 - Hardware .,,.m drawn with PICture 1
A-42

UNCLASSIFIED

" 4 . .



UNCLASSIFIED

TEAMWORK

by
Cadre Technologies, Inc.

Teamwork is composed of 6 tool modules:

Teamwork/IM -- Information Modeling (Version 2.2 and above) ,' , ', ,.

Teamwork/SA -- Structured Analysis .,,

Teamwork/RT -- Structured Analysis with Real Time Extensions

Teamwork/SD -- Structured Design

Teamwork/ACCESS -- Utility to Access its Data Dictionary

Teamwork/DPI -- Document Production Interface

Cadre has sold over 1000 copies of Teamwork to several dozen clients. Their largest user

is Boeing. Another large user, Federal Express, has implemented over 150 models in the

Teamwork package. The largest single model that Cadre is aware of was developed by ._ .

Lear Siegler. That model consists of over 2400 data dictionary elements and is used by -

four analysts. ..-

Teamwork, as an integrated product, is a multi-user, multi-window, multi-tasking -

application that runs on: all Apollo workstations, Sun-2 and Sun-3 workstations, Hewlett V
Packard 9000-300, DEC VAX station II, and the IBM RT PC. Teamwork can run on the

entire VAX family, with its database on any VAX and VAX stations providing the ....- ,

graphics. In addition, Teamwork supports these networks: Ethernet and the Network File

System (Sun); networking through the Domain operating system (Apollo); DECnet and

Local Area VAX Cluster (LAVC); and various PC and micro-mainframe communication

options for the IBM RT PC. Menus, commands, and functionality are identical among

versions and independent of the hardware platform. IDA used Teamwork version 2.2 on

Apollo.

Teamwork/IM (Information Modeling) provides support for the creation and

checking of Chen entity-relationship diagrams for database definition. Although no

specific schema generation capability is provided by TeamworkIM, a user could employ

Teamwork's ACCESS package combined with user written C-programs to implement this

capability.

A-43

UNCLASSIFIED pt

0,.a.t. e

.*4 -, - ,1'



UNCLASSIFIED

Teamwork/SA includes the baseline capabilities necessary to perform system

analysis. Formalisms included in Teamwork/SA are data flow diagrams (Yourdon and

DeMarco convention) and process specification sheets. Included with Teamwork/SA, as

with the other tools, are a centralized data dictionary, a graphical interface, and revision

history facility for the design data. In addition, Teamwork/SA provides syntax and

consistency checking capabilities for the formalisms it supports.

Teamwork/RT can be purchased in conjunction with Teamwork/SA, and includes ".-

capabilities to address the needs of real-time systems designers. These additional

capabilities include:

Control Flow Diagrams (as part of DFDs or as separate diagrams)

State Transition Diagrams

Process Activation Tables ,

Decision Tables

State/Event Matrices

Teamwork/SD is an environment for systems design that works in conjunction with

either Teamwork/SA or Teamwork/RT. Formalisms included with Teamwork/SD include
structure charts and module specifications. Structure charts included with Teamwork/SD

support the methodology prescribed by Constantine and Yourdon and notation as described

by Ward and Mellor, and Page-Jones.

Teamwork/ACCESS is a software package that gives the user read (and write in

Version 2.3) access to Teamwork's data dictionary through routines written in a higher

level language. At this time, the available language binding is C. This open architecture .

provides the user with the ability to add-on and extend the product. Though significant -

programming may be required, the Teamwork/ACCESS could be used to: 0 7

Transfer dictionary information between the project dictionary and specialized ,d

project management tools (cost & schedule tracking tools, cost estimation
tools, etc.) ,

• Create custom reports that are not provided for by the normal reporting or
document production facilities

* Develop custom add-on applications like simulation facilities, code generation
facilities, or specialized design metrics. ..

A-44

UNCLASSIFIED



It

UNCLASSIFIED

A feature of Teamwork/ACCESS is its use of read and read/write locking so that custom

extensions work in a multi-user environment.

Teamwork/DPI is a package to automatically produce first-cut documents

conforming to user-specified templates or to MIL-STD 2167 Data Item Descriptor templates

(provided with Teamwork). The package works in conjunction with Teamwork/SD but

allows any pictures or text in the Teamwork database, or other ASCII text files on the host
platform, to be automatically pulled into the template format. The resulting first-cut
documents can then be refined using the Interleaf, Context, or Scribe publishing software
available from other vendors. These packages include editing and page formatting

capabilities. 0

The individual tools are integrated under a common graphics user interface. This

interface supports multitasking and multiple windows, if this capability is resident in the

underlying operating system.

Figure 1 illustrates the initial menu selections available to a user. Figure 1

illustrates the format of the main Teamwork menu bar (Windows.. .Stop) and the drop

down menus which appear under each of the four selections on the main menu. In

addition, the "Direct Access..." selection of the second level menu is exploded to a further

level as the resulting form is probably the most used selection of the Teamwork menu
interface. The "Direct Access" menu provides the mechanism by which a user can: .. .

• Obtain a list of projects (Model Index), a list of diagrams (Process Index), or a
list of data dictionary elements

* Open a specific diagram for editing (Object Type:...)

* Annotate any element of the system (project, diagram, or element)

Figures 2 through 9 illustrate some of the diagrams and results which may be -' --' ,

accessed through the main menu. These diagrams are as follows. ,

Syntax and consistency checking is available for each of the above formalisms.
Figure 10 illustrates the results of such checking for one Teamwork data flow diagram.

Sample outputs of the data dictionary listing and a typical data dictionary element's •

attributes are illustrated in Figures 11 and 12. (Figures I - 12 follow the text of this O.-.

evaluation.)
Teamwork has many strengths. It is easy to use and provides a consistent user

interface across a variety of hardware platforms and network capabilities, as listed earlier. ]

A-45

UNCLASSIFIED



UNCLASSIFIED

Its open architecture allows the user flexibility in extending the data dictionary or linking

with adjunct programs for analyses specific to a given design situation. In addition, the

document production utility, supporting the automatic merging of text and graphics,

facilitates the development of manuals in accordance with DoD specifications. Other

features, such as the ability to do an unlimited number of undos or redos during graphical

editing, are also very convenient.

Teamwork's newest release, Version 2.3, includes these additional features: a P
Graphic Notes editor that provides object annotations in free-form graphics (templates also

provided for common presentation and flow-chart forms); enhancements to #.

Teamwork/DPI, Teamwork's data dictionary, model renaming and copy features; and,

capability to run diagnostic checks as a background process outside Teamwork, as well as
A

to diagnose portions of a model that another user has open.

Teamwork Version 3.0, scheduled for second quarter 1988 release, will include:

Model Configuration Management, for establishing baseline designs under formal control

with the means to compose a baseline from various component versions; and

Teamwork/Ada, a Structure Graph Editor based on Buhr's graphic notations for Ada

capabilities. The latter is the first step in an announced plan for Ada support, which will

lead to other Ada tools including an Ada Code Generator.

.-

%"

A-46

UNCLASSIFIED

= ~lg e % ' -, %



UNCLASSIFIED

iI 4

I ga.st

1000

£C fn

1'6a

CEs 0i 0 S IO

% o

A-47
UNCLASSIFIED



UNCLASSIFIED

0 ..

-.4 M

%-j I. -

0- C
0,

0 0 c-

Q ( 0 C- af

C.MC

>d (U X -ON 4J' 0 (a4
4.00 Q to. a) M5 C,.1C -(

M.0 CD4 CC 0- -40 ~
2 ~~ CO I i 0 ) b

LO~ Q- CLL .

IM 0 6 0 0 L4 -

o~ ~ > c- I.-LS-

c 104. C- 0 0Q

4.0 C ~w C -. Oo c -

.. ....J L .- .0. .. .0.

CLCL 0 0C UU~a

2. 0 .S

C CM %

6.0

CLC

:0 :~ (A

4' 3- 0'00
0 o -0 s050 cz U 88 . j

0 LC A M LL~J U . u- n J0
fil cn W = =4 o)A(EM L. - 1

Fi0ur 2 prcs ne o h oe fa lvtrcnrlsse

**0 C. . . . ..-45

UNCLoo t-. S



IL Krs W, K7. u r

UNCLASSIFIED

"~~~~~~p . .

ItU %

Fiur 3 - aaFo-igaT~nex iga o h oe

-,n N



UNCLASSIFIED

oilN

MI

lilt!

S 

W

13

Fiue4-Ett eltosi iga

A35
UNLSSFE



UNCLASSIFIED

L I-

C- 1-

II

acc

in it nV bQ *C

A-515

UNLASIIE

dp



UNCLASSIFIED P

el -

b

N N NM

* I -

i

N !* - :I:

a I

', ', * .

a I

- a

_,- ,,

':

Figure 6 - Process Activation Table "II

A-52 ,%*

UNCLASSIFIED."i

, .. _ , ., ., . ,, .- g .. , ,.. ,\*,, p V., , I . ,II . . -.. ',,'.'.. II , *: *;_ . *.. . ..- 4. : ./ . .: .,: -



UNCLASSIFIED •

I p4%

I £

dde

I 1)

p 4i,' 'p,-

Figure 7 - ttTas tio Piga

"--

-- 3..4. ,

C.

C60 0.

-010

00

CL

4'CL

v.V I

C -'L

'3 0

Fiur - Stat Trniin iga

o UA-53

UNLASIIE

* C%



UNCLASSIFIED I

:':

10:41:07 17 Aug 87 ELEVATOR_2 M-Spec PROCESS OPENCLOSEDOOR REOUES page 1 P.

NAME:
PROCESSOPENCLOSE_DOOR REQUESTS;2

TITLE:
process open/close elevator doors requests

PARAMETERS:

LOCALS:

BODY:
begin ;,.: i-.

if elevatorpjosition - on floor then
process comend "

If comand - opendoor then

send open door signal

else '.-

must be a close door coomand ' "
send close door signal

end if

else "

* between floors *
cancel request

end if

end "

UNCLA-SA-F *
27- ".

UNCL - IFIEO
I

, ,, , "''...""'.. --'.-..". -...".,- '" . -". - . " .• "."'.',' '.-.".".-.- -.. '.-.".. .... . . . .A, "... ".".' .. v , -



UNCLASSIFIED WO

=U-I _ E 2.2;4.

File Whole P-Spec Annotate Print ,*,-

TITLE: scheduler

INPUT/OUTPUT:
activitg_log : data_out

elevator commands : data out

requests :data in

on-board request : data out ,'

-leato-sttu da,
elevator status : data in

elevator status :data out",-',

on-board request : data In

on-floor request : data out -

on-floor request : datain

interrupt notice : data in

elevator-assignment : data-out

elevatorassignment : data-in

current-state : datain '--

BODY:
P-Spec empty.

Figure 9 - Process Specification
% %% N N

4-:- N

A-55 %',"

UNCLASSIFIED 0

• , %*, "_

~ r"P*~*' * . . .. . . . , . • ' " . . V 4" ' =" "" /'%



UNCLASSIFIED

1 3 ........... ......

.. .C C ... .... .....

LAC16

o 0

4-? 0 U ;

0 a..

0 3C M

0 * CM

CM .V 0 0

M .Q4U . = -S0 Q "N

0O &00- 060 ()r

IM 00 r6 *0 aC 0-00 I
C- 00 -- > 0= 9 M

CD C D a-
*n 0 c-a) ~ 'A~ OC C

(A X 4 0L 3CA MI jf C j C.
tillW 4. L V 0 CL- I 00

-n c cc C T 0 0 (D )
0 CI .. 0 a.V a0 ~-

09 Cfl r.) 1.V (D 0C 0 0C- V-(
CM 10 1 C(D )z. 0 CM .>-

In - C- I.. a0 0 i j 1

C3C
0 0L (1) AUi0C0 - M 0 1- -

C0 0, C- 3 I 9 ... ..

L dg 0 CD 0 C. a. 0 .-
0. CM .... ..a~ ..a ~
2 0 b 24 LU 0.
e - 0O

x ~ - CL Cj 1'- '0..) '
0~1 VC. 4 0 M3 0 ~

ME 0 -0 0 C L O

xJ- MO ) C 0 CUC O-,
C CCI.0U 0 C

*3 C" C ) ~ . ( O

- - .0..0CJ C

0. 06 * 0U

0 C.w-.

Fiur 10- -0 a peo onitnycecigotu

A-56
_ ~UNCCLASSFIE



UNCLASSIFIED
,, . ", _

. .. .F.

=0 = .t mdtl _-__--.______,_________
File Whole-MDT Print -="

DoD 2167 DI- --r-_ M b= Elevator* _ _ _-__ _

DoD 2167 DI-M File Whole DD Annotate Print

DoD 2167 DI-M activity log ....... ............... (data flow) (1)
DoD 2167 DI-M command input .. ................. ... (data flow) (1)
DoD-2167-DI-M composed ...... ................. ... (store) (1)
DoD 2167 DI-M current state .. ................. ... (data flow) (1)
DoD 2167 DI-M direction .... .. ................ (data flow) (1) •
DOD 2167 DI-M elevator assignment .... .. .. ... (data flow) (1)
DOD 2167 DI-M elevator commands ... ... .. .... (data flow) (1, 2) OW
DoD 2167 DI-M elevator control ..... .. .. .... (control flow) (1, 2)
DoD 2167 DI-M elevator number ..... ............. (store) (1)
DoD 2167 DI-M elevator status ..... ............. (data flow) (1)
DOD2167_DI-M failure log .... .. ............... (store) (1, 2)
DoD 2167 DI-M floor number .... ............... ... (data flow) (1)
DOD 2167 DI-M history ... ... .. .. ... .. .. (store) (1) .
DOD 2167 DI-M includes .... .. ... .. .. .... (store) (1)
DoD 2167 DI-M interrupt notice .... .. ... .. .. (data flow) (1)
DPI Example on-board display .... .. ... .. .. (data flow) (1)
Elevator on-board log .... ............... ... (store) (1) "*
graphic notes on-board request .... .. ... .. .. (data flow) (1) 0
OMEGA on-board requests ... ............ ... (control flow) (1)

on-floordisplay ..... ............. (data flow) (1)
on-floor log .... .. ... .. .... (store) (1)
on-floor request .... .. ... .. .. (control flow) (1) .

on board input .... .. ... .. ... (data flow) (I)
reports .... .. .. ... .. .. .. (data flow) (1)
requests .... .. ... .. ... ... (data flow) (1)
sensor input .... .. ... .. .. .. (data flow) (1)
sensor inputs .... .. .. ... ... (data flow) (1)
supervisor commands .... .. .. ... (control flow) (1)
supervisor log .... .. ... .. ... (store) (1)
valid sensorinput .... ... .. ... (data flow) (1) .'.

...........

.-. .. .

.- .-9-

Figure I I - Data dictionary listing 0

. ',?.

A-57 0-

UNCLASSIFIED

41 .



UNCLASSIFIED

12 Elevator* ______________

File whole-DD Annotate Print
activityjlog ... .... ..... .... (data flow) (1)
command input .... ..... ....... (data flow) (I)
composed ... .... ..... ....... (store) (1)
current state .... ..... ....... (data flow) (1)
direction.. ..... .... ....... (data flow) (1)
elevator assignment.. ..... ...... (data flow) (1)
elevator commands.. ..... .... .. (data flow) (1, 2)
elevator-control ... ..... .... .. (control flow) (1, 2) -

elevator _______= elevator comniands;2. H
elevator- ___

failure File WholeDDE Annotate Print 2
flIoor nlu Attributes: (data flow)(1
history *The controller sends the elevator
includes the list Of floors it will stop on and the
interrup direction of movement if different from the

onbadcurrent direction.* 1
on-board
oni-board movement directionnext floor stopistart up (1
on-board ow) (1) .

on-fl oor ()I
on-floor
on-floor .:, w 1
on board . 1
reports ..... .... ..... .... (data flow) (1)
requests ... .... ..... .... .. (data flow) (1)
sensor input ... .... ..... .... (data flow) (1)
sensor inputs .... ..... ....... (data flow) UI v,'
supervisor commands.. ..... ...... (control flow) (1) '

V,.

Figure 12 - Sample data dictionary entry

A-58
UNCLASSIFIED

NI
4%2z tz 'L Pilo



UNCLASSIFIED

Appendix B
Tool Evaluations •

1. SECURITY AND SET-UP PROCEDURES

1. 1 Describe any security features the system provides, such as a user
name and password, beyond those provided by the host operating
system. .

TAGS

On entering the TAGS system, via the "TAGS" command, the user identification S
and password must be given.

AUTO-G

None. .' -
o

DCDS N ,,

The only security feature provided by the tool is a password feature which restricts 4.
who is permitted to change the database schema, for example, to add a new type of
element, or delete an existing type.

S2T%
None.

TEAMWOYRK

None. r-0

,,, . i

---..:.'.

B-1
UNCLASSIFIED

'.5 5*

.0-:::



UNCLASSIFIED

1.2 Describe any access permissions the system provides you to share
your design work with other individuals or a group.

TAGS

For the design of a large system, the TAGS database would reside on a file-server
accessible through a network. The TAGS development environment allows
separate components within a system to be assigned to an individual designer or
group of designers. Access to the design of these components could then be limited
to those individuals.

Synchronization and merging of different designer results is difficult for all tools.
In TAGS, it is possible to decompose any block into separate blocks; these may
then be copied as separate systems and assigned to different designers. They
would work separately. Later, TAGS has features to help merge their efforts (not
tried by IDA; the names of the parts may need to be carefully worked out, and the
dictionaries administered externally to ease the integration/merging).

AUTOIQ~

Typically, a system is decomposed into documents (interface and subsystem
definitions) by a system administrator, who sets the operating system access
permissions for each document. Individual designers restrict their effort to
individual documents, for which they are given read/write permission enforced by
Unix. Others may be given read permission to view and thus share one designer's .,
results.

DCDS

There are no access permissions provided by the program to share work. It is ,
possible to share work using the SHARE command in the VAX version, but only
one person may uso a database at a time.

? STP E

There is a lock-handling facility which permits a designated project administrator to
restrict read and write access permissions on particular diagrams or project
databases to specified users or user groups.

TEAMWORK

None - anyone who can access Teamwork can read any part of the design, and
modify it unless locks are set to prevent it. A capability planned for Version 3
(1988) will allow control on which individuals may open and set locks on design
parts.

-.

B-2
UNCLASSIFIED



UNCLASSIFIED

1.3 How does the system let you know if someone has used the same
name to identify a project?

TAGS -

When the user attempts to create a system using the name of an extant system,
TAGS notifies the user: "SYSTEM ALREADY EXISTS".

AUTOQ

Systems would be catalogued in separate Unix directories, so name conflicts are
handled by Unix conventions. The user accesses named "views" of a system. If
the name chosen for a view is already being used, then that view would be
displayed.

DCDS does not let you know if the same project name has already been used. It
merely overwrites the current file with the same name on the AT version. On the
VAX, DCDS creates a new version of the database.

Once a user has created a project database, any access using that name relates to that
system.

IEAWOR

A project index is provided. A name that is already used will reference the project .,
or system given that name.

%

% %

-% .% ,

% 0

B-3
UNCLASSIFIED

S . .% ,, % 
'



I+
UNCLASSIFIED

1.4 How does the system protect against unauthorized use/viewing of a
particular part of a system design?
TAGS

Within the TAGS environment, a user or a group of users can be given restricted
access (read/write or read-oniy) to the group of diagram and tables associated with
an SBD component. In TAGS this group is called a document.

AU.

AUTO-G relies on Unix permissions to restrict access to the separate views and 'r i
documents of a system design.

I

DCDS provides no means to restrict access to separate parts of a system design.

When the locking facility is engaged, unauthorized users are not allowed to use the
system's editors and utilities to access the protected files. Without engaging the
locking system there is no protection.

O

Teamwork provides read-only and read/write locks to control modifications to the ,
separate parts of a system design. An unlocked object at present can be locked by
any authorized user, see question 1.2. ,-

--4
..A .-.
' -S

.

S. *w.5

B-4 a-'+," ,.
UNCLASSIFIED

a',. , * -a,

.. . . " + ' ''+ f - + +" + + ++1 : i -a-. .. a- a- ...a-ii



UNCLASSIFIED

jIV

1.5 Describe how you retrieve a specific document or diagram (i.e.,
querying capabilities).

IAQ5

Choose the ACCESS/CREATE option in the main menu, and give the system
name. Only those documents allowed by password protect will be available. Then,
in cdit mode, the DOC, SEC, and PAGE identifiers must be entered. Otherwise, in
displa mode, the mouse can be used to select and view parent or child descriptions 14

or diagrams.

The user may name any individual view of a system as a parameter in the "auto
new" command that invokes AUTO-G. A view also can be accessed by the READ
command from a pop-up menu once AUTO-G is running.

The DCDS QUERY facility can be used to display any part of the database •
textually. Diagrams may also be displayed graphically by entering the graphical -
editor BROWSE and typing the diagram's name.

SIE
Using the diagram editors, a user can specify the diagram to be viewed or edited.
For a hierarchy of diagrams (e.g. DFDs) the user may specify any diagram and A

subsequently retrieve the parent or child diagrams. The user can also "push" an ... .

object on a diagram, such as a data flow in a DFD, to call up the appropriate editor "A.... A

which will retrieve the desired description or definition of that object.

The system also provides querying tools to browse or edit the data dictionary . ,
directly.

TEAMWORK " '-

The user interacts with the system through series of windows. First an index is
retrieved and a project is selected. Then the user can get a process index listing of "
all the diagrams and data dictionary entries for the project. The appropriate diagram
or entry is retrieved by highlighting the name and selecting the appropriate
command in a menu. Within a particular diagram, the user may select items and
retrieve parent or child diagrams or dictionary entries.

% A

B-5.P . A

UNCLASSIFIED ,4\.

. . - .. . . . ..-. . . . - A. . - . . . . . . -. . A . - . -. A-' -- . -- --A - . , - , . , - . '- '. . .:



2

UNCLASSIFIED

From the main menu, the following steps are necessary to access a specific
diagram: I

Select WINDOW
Select DIRECT ACCESS
Select PROCESS INDEX
Select [DIAGRAM NAME]
Select OPEN LAST

If the user knows the diagram or document name he may bypass the menu scenario
and directly enter the name after using two menu selections (i.e. select WINDOW, . ,
select EDiT).

Ile

B-6iVV

S..-,

) ,

I



UNCLASSIFIED

1.6 Describe how you get a directory listing of all systems and system
components. S

To get a listing of all the systems accessible by a particular user, he or she can use '' .
the SYSTEM - REVIEW/ARCHIVE/LOAD utility. Having invoked this utility the
SCROLL UP option will give a listing of these systems. To get a listing of the
components of a given system, use the UTILITIES LIBRARY option of the main
menu, and the AUDIT option beneath it.

AUTO-G .%

Typically each system is placed within an exclusive directory, and the operating S
system is used to list the systems. Within a given directory (system), the database
utility, dbutil will give a listing of all the "views" of the system through the ,,, .
directory command. This can be invoked through a separate Sun window while
using AUTO-G.

The operating system provides a listing of all systems. A list of all the design
components is displayed by invoking QUERY and typing "list all".

sIp

They are obtained through use of the data dictionary utilities.

The user first retrieves a project index of all systems, then having selected the
project of interest, retrieves a process index of all components. .

B-7"

UNCLASSIFIED

.*'**,*,,*\



UNCLASSIFIED, .

2. USER INTERFACE

2.1 Critique the tool's menus. Are they complete (i.e., do they contain . h

most of the features of the tool that you would access frequently),
easy to understand and use, and clearly organized?

TAGS

On the current Apollo version, a fixed menu bar is provided at the top of the '
display. The SUN version, now being implemented works from pop up windows
and pull down menus. The formats are specific to the mode or tool being used and
the menus provide easy access to the utilities. -.

One menu of icons is provided for all diagramming. TAGS needs an intelligent
graphics editor to improve this. For example: When one is designing an SBD, only
those icons that pertain to SBDs should be presented to the user. In addition, the
rubber-banding of connectors between symbols needs to be improved. The TAGS
editor should be able to insure the user that "what he or she sees is what he or she
gets". It was disconcerting to see what appeared to be two symbols connected,
which in fact were not connected -- always revealed to the user by the
DIAGNOSTIC ANALYZER or DA. Finally, TAGS should allow the designer to
make changes to a diagram or table and analyze the effects of the changes without •. .-
being forced to write over an existing diagram or table.

A U T O -(G"' .,%,

The AUTO-G environment provides a well developed syntax directed graphirs-
editor. The icon menus presented to the user only contain those constructs (e.g.,
tree nodes) which can validly be added to the G tree at a specified point of
construction.

One problem with the current version of the editor is over restricdon. Where it
would be particularly convenient to "cut and paste" a portion of a G tree, the G- "-
editor in certain cases will not allow it, even though the resulting tree would be
syntactically correct. , f.

Besides the menu of available graphic icons, a two level hierarchy of walking
menus is available for selecting various viewing, editing, and activity commands.
DCDS

The available graphics editor, BROWSE, is menu-driven. These menus are fairly
complete. Key shortcomings are the lack of options to cut and paste diagram
elements. Also, the panning facility requires turning off the main menu first, doing
a series of panning steps, then reenabling the main menu. ENTRY, QUERY, and
other editors are command-driven with no menus or help screens. Only the IBM- -
PC AT version provides for rena.aing diagrams. ""

B-8 ,%
UNCLASSIFIED

%*******



UNCLASSIFIED ., .4,,

Each editor or tool has a fixed menu, as well as two level walking menus. The .*. '.
menus are easy to use, clearly organized, and apparently complete."'-? -

The editor for each diagram type or text has a menu which provides for selecting the
common operations. The selectable items are highlighted. Menus are apparentlycomplete; however, in some instances the user is forced to go back to the process .index (in 3 step menu selection) or elsewhere to retrieve information that should. ,.,
have been accessible by selecting a menu item.

O

,% , %4.
'~ ..- .r/

4.o......4_.

S
B-9 .

4.-?,,.



NA 7

UNCLASSIFIED

2.2 Is the method for selecting, pointing, and keying menu options
convenient for the user during common command, editing, and
display actions?

1A0S

The mouse and keyboard are the only input devices. Mouse selection and use of
menu options is rapid and efficient.

AUTO-G

The mouse and keyboard are the only input devices. The icon menu is easy to use,
as such, but the icons available in some cases are numerous and so similar that it
may be difficult to determine which icon is desired. However, an icon resulting
from an incorrect selection can easily be deleted.

Only the graphics editor, BROWSE, has menus. In the VAX version, cursor keys
are used for selecting and pointing. This requires repetitive keypresses. This is
particularly unfortunate since the single cursor must be repeatedly moved back and
forth between the menu and diagram areas. (The menu is at a tixed side of the - "
screen.) In the AT version, the mouse provides more convenient pointing andselecting.

STP E

Yes, the selection method for using the mouse and pop-up overlaying menus are %
convenient. However, there are some minor problems. For example, sometimes
when windows are overlaid the text identifying the use of a particular window is
obscured, making it difficult for a user to determine which window is which.

*1*TEAMWORK -

Yes, the mouse and menu interaction works well. Teamwork has context-specific
menus that show the choices available for picked objects. These change
automatically as you move to different windows with different picked objects. A
minor complaint is that on some actions the user must select the menu item of
interest and then additionally select "OK" on the same menu.

Several features of the menu system are very convenient. Specifically the ability to
move and resize windows or to shrink a window to a one line place holder are very
useful.

B-10
UNCLASSIFIED



UNCLASSIFIED

2.3 Is a mouse required to use the package? If so, describe its use.

The mouse is not essential. The cursor keys and other key sequences can perform
the same functions as the mouse. The mouse is a selecting or pointing device.

AUTO-G

The mouse is essential for picking diagram elements and icons during editing. Key
sequences may be used in lieu of pop-up menu selections.

The mouse supported by the PC-AT version is used to point to command choices
and objects in the graphical editor - but cursor keys may be used also. The VAX
version of DCDS does support the use of a mouse. The cursor keys (i.e., the up,
down, left, and right arrow keys) are used to select menu items, edit a diagram, or
pan across the working area. By depressing the shift key and an arrow key, the
cursor will move in small increments across the diagram.

A mouse is required for choosing menu options and for using the graphical editors.
It is used to point to graphical objects and menu choices. The mouse has three
buttons. The buttons are pressed separately to select, cancel, or delete, or pull up a
menu or window.

The mouse is essential. It is used to select an item, call up menus and cancel
commands.

N

B-11

UNCLASSIFIED

i r '.'3.Z -.'.'% .' '.,, ' -'.','-'-'. .. - -'-. '.',' " ',.'.'.-.- ',' "2 -:, ._. ',' , ,'., -'' ., " "



UNCLASSIFIED

2.4 Does the system support a high resolution display yielding high
readability while displaying a large, fully labelled design diagram?

TAGS

Yes, the Apollo provides a 17" diagonal high resolution display. The TAGS
method constrains diagrams into pages (with connectors to join flows onto other
pages).

The Sun workstation provides a 19" diagonal high-resolution display. AUTO-G . ,
provides a "window" into the view being displayed, which gives a readable, but
possibly small part of it.

No, the current system does not support a high resolution display. Current
implementations run on the VAX supporting the Tektronics graphics terminal, or on
an EGA board for the AT. Neither implementation allows fully labelled designs,
but only 8 characters per object.

Yes, on the Sun workstation used by IDA.

TEAMWOR.K

Yes, Teamwork is ported to many workstations which have high resolution
displays, as listed in Appendix A.

, | ,

B-1 2 ,,

UNCLASSIFIED
p

' . S * * . . . . .S'** , . . .. - .. . . . .. -.-. .-.-.-. .-.-.-.-.-.- ,-€ , -%



UNCLASSIFIED

2.5 Describe any problems you had in specifying the design using the
graphics editor. For example: Was it difficult to add or delete text,
or place an object in a certain location in a diagram?

TAGS

The major problems in the use of the graphics editor are:

The system does not "rubber band" the arcs between blocks or flow
elements. This means that the user must guide the line around other objects "%d.
and may later have to delete and redraw it when a need to reroute it occurs.
Moving a block may also "break" a connection (arc).

Because the graphics editor is not syntax directed, it is possible to terminate
the line a very short distance away from the block to which it should be
connected. This is only later discovered (during the DA, where a lack of
connectivity is found).

The name of the connection (arc) between two blocks in an SBD is always
the same as the DOC-name with a hyphen and number; e.g.,
INFO SYSTEM-12. Since these are required prefix names, it would be
reasonable to provide them for additional editing. .'.

" There is no symbolic text editor. In several cases, a single change was to be
replicated in many places, and an edit facility would have been very useful.

" Although a symbol or group of symbols may be copied from one diagram to
itself, another diagram, or many others, there may be several copies on top
of one another (and found either by bringing up the LABEL on the
symbols, where two different numbers are superimposed, or else when
running the DA and finding unexpected errors).

* Error and other system messages appear in a rather small area at the bottom
of the screen. Since the system messages are routine (such as SAVED), the
errors may be ignored. Also, in some cases, the error message number was
not recorded in the manual.

" There is no way to highlight or query a diagram for the component number S
given in an error message. If there are many components, scanning the
diagram for the error is time consuming.

AUtO-G

AUTO-G provides a easily used graphics editor for creating and editing G-trees.
For large and fully revealed diagrams, the display provides a small viewing
window on the whole. Inevitably, when the designer decomposes a process (tree e - -

node) into subprocesses, which are placed subordinate, they may not fit within the
viewing window. Experience and discipline in using G should eliminate this as a

B-13
UNCLASSIFIED

,9



UNCLASSIFIED

problem. Any object on a diagram can be hidden (removed), leaving only a small
residual marking (a few periods or dashes) to show its existence. Easy zooming,
down to nine discrete reduction levels, is provided, but only four seem useful.
Readability is good at the two highest zoom levels where text labels are presented.
Picking a desired object precisely can be troublesome also, since diagrams carry
many specification elements and many are close together spatially. One or more
diagram objects may be marked, to speed up otherwise repetitive operations, such
as delete, move, or copy.

Problems include:

" When an element is deleted, all elements below the object are also deleted.
This is a problem due to the lack of cut and paste facilities, a renaming
capability on the VAX, and because all diagrams have a hierarchial
structure.

" Diagram editing is slow and tedious. Editing a diagram requires repetitive
keystrokes to move to a menu window, choose an option, and then ;-

repetitive keystrokes to move back to an object

" The graphics editor provides no control over the layout of the picture. For
instance, you cannot specify which side of the parent node a child node will
be placed. This makes the starting point of the diagram rapidly extend off
the screen. If the diagram is large, the user then must use many additional
keystrokes to pan across the screen to the starting point of the model in the
VAX version. Moreover, in the VAX version, when any menu option is
chosen, the diagram is redrawn in its original position, requiring the user to
re-pan the diagram.

" Graphical objects which require extensions, such as the parallel symbol, are
not automatically extended, and the graphics editor allows them to be
incorrectly extended.

* Syntactically incomplete or incorrect diagrams cannot be saved.
Furthermore, there are no error diagnostic messages.

The following problems were encountered:

* The Ada or C code generated for data definitions of enumerated types is not
correct.

* Any symbols which are overlaid by a symbol of the same type disappear.
This is particularly important when two or more arcs for data flows connect
the samt objects, for unless the user intro~uces extra vertices to torce the
flows into different arcs, both arcs disappear from the screen. If for some

B- 14
UNCLASSIFIED

-r



UNCLASSIFIED

reason the invisible objects become unconnected, or errors are reported
during checking, the symbols cannot be located graphically for correction. S
Similarly, anchors are too small in the diagrams. If an anchor becomes
unconnected it may easily be forgotten until the checking facilities report an
error. It is then difficult to spot and correct. The system should point to an
object giving the error. Problems can also arise due to the similarity ,
between anchors and vertices.

* The same diagram can be shown in more than one window, and updated
differently in each window if file locking is not engaged.

* The existence of decomposition or definition of a DFD process is indicated
by an "*" or "p." in the process bubble. There are no such notations to
indicate decomposition or definition of any other elements in DFDs, or in e
other diagram types.

* When decomposing an item for the first time using the push command, the
new graphical decomposition is in an extremely difficult-to-use format. It
takes some time to move parts around into a usable format.

* The pipetool window always displays a message indicating the task it is
performing or whether it is waiting for the next command. Windows used
for editors should also do this. When certain commands are requested
(e.g., invoking a new editor) there can be a long wait, during which the
user is not sure what, if anything, is happening.

* When processes in a DFD are deleted, a menu option is provided to allow "
changing process indices. Once changed, the new process index value is
supposed to be remembered so any new processes are indexed correctly.
This did not work.

* The system permits a user to decompose a non-leaf module in a structure
chart. Also a data parameter pertaining to a particular arc between modules
can be positioned anywhere in the diagram, even beside a different arc.

0 The system permits a user to define more than one process on the context

diagram. This leads to various problems when all those initial processes are
decomposed. The tool relies on numbering with process 0 as the context •
diagram, processes 1, 2, 3, ..., as the first level decomposition, processes
1.1, 1.2, 1.3, ..., as the decomposition of process 1, and so on.

There is no way to type in the name of an object and have the system skip
directly to that object. This makes large systems more difficult to use, since .
finding an object's decomposition may require popping through a number
of levels.

In a data structure diagram. when two or more. selection boxes are placed inclose proximity, the selection symbol "o" jumps out of the boxes to lie
between them. Actually, the "o" symbol remains in the box, but the 2

B-15
UNCLASSIFIED



I
UNCLASSIFIED

overlapping symbols give the appearance described here, since the lines
cancel one another.

" If the database is closed during the creation or modification of a diagram,
the new diagram is stored two-levels up in the directory. However, the user
is not informed of this.

* The tool does not provide for "popping" back to the data flow diagram from
the data structure and entity relationship editors.

t When the user chooses the "push" option from the menu, the submenu of
options for decomposing or defining a process does not always appear. :" *'*

Some problems were encountered: s ,

* Text can be overlayed (actually it is not exactly aligned on the vertical axis)
on other text with little indication that this has happened.

* During the course of a graphics edit, the screen usually had to be redrawn 0
multiple times due to lines or text missing. Version 2.3 display
enhancements are intended to eliminate this through automatic repainting. ,

" Text cannot be selected on a diagram when using less that a 1:1 scaling
factor.

" With a 1:1 factor, picking is touchy, and repeated tries are necessary to
successfully pick the desired one.

An object opened in another window for update is locked and cannot be
updated until the user finds the window and closes it; Teamwork version
2.2 does not indicate who has the object open, but version 2.3 will remedy
this problem. A facility to automatically retrieve the conflicting window
with the name of the user who has it opened is desirable.

Consistency between the graphics and data dictionary entries is not "
automatically maintained. For instance, if an object's name is changed in
the data dictionary all the diagrams which contain the name must be
manually edited to reflect the change and vice versa. Changing the name of
an object is therefore difficult. A feature which assists such changes is the"where referenced" choice invoked from the data dictionary index. It will
show all places that an original name is referenced in diagrams and tables. ,

e

B- 16 64 €
UNCLASSIFIED _



- * I -S -... s. ,. 7. i: 3%

UNCLASSIFIED

2.6 Does the system provide undo capability?

No. ,-

AUTQG

No.

No.

Yes, the one-level undo key lets an inexperienced user experiment while knowing

he can undo an action if necessary.

TEAM1Y ORK

If a mistake was made the user could recover by either undoing the modifications
or, if the diagram had been saved, by rolling back to a prior version. The UNDO
feature and its opposite function REDO, were particularly nice as the user could
step backwards through diagram changes for multiple steps rather than being
limited to undoing the last action only. Unlimited UNDO is provided in every -
window.

,F
..

13- 17

U
* °"

- 4 -

UN LSIIDw

S



%S... -

UNCLASSIFIED

2.7 Does the tool provide an acceptably quick response to designer
actions and output requirements?

Most of the time-consuming operations (e.g. analysis and printing) are spun-off as
background processes. A mechanism for checking the status of these processes is
provided. The response for editing and display actions is good....

AUTO-G.4

The G-editor is relatively slow when adding to or deleting from large diagrams.
The semantic analyzer SEMA seems to function in a timely fashion. "-Y

The graphics editor, BROWSE, does not provide as quick a response to user
requirements as QUERY. In particular, on the VAX version, it takes about 10
seconds to redraw the screen after any change to a diagram. QUERY does provide
acceptably quick responses to user requests.

The tool does give a quick response to editors commands providing it does not
require a change of diagram editors. However, if a new editor is required, there is
a noticeable delay, of up to about 30 seconds on the Sun 3/50 that IDA used..

The most frequent activities have very good response time. Consistency checking i
and the initial Teamwork login are noticeably slow. Consistency checking of
multiple levels of a large model could become time consuming. Two ways
Teamwork helps reduce the impact are: do subtree checking, from one
decomposition level downward, rather than the entire design; and, do entire design
checking as a background process (available in Version 2.3).

4
,

M,4I



" r UNCLASSIFIED

2.8 Cite the worst case you encountered of slow response r lengthy set-
up to complete an action?

TAMa

Slow response may be encountered in: 1) printing; 2) diagnostic analysis; 3)
simulation (not exercised by IDA).

AUO--

Plotting a G-tree on the Hewlett Packard 7475 plotter is rather slow, as would be %
expected, and should be done as a Unix background process to eliminate this
problem. A major deletion or addition to a diagram may provoke a rather slow (15-
30 second) response on the Sun workstation. 0

The worst case is loading and saving the database, which on the AT version can
take 1 to 2 minutes for a small database, using a Bernoulli disk. The VAX version
requires about 1 minute to load the database, depending on the current workload of 0
the machine.

The worst case for the tool is starting up, with times of up to 5 minutes common.
The system was also slow in changing applications, up to 30 seconds per change. 0

The worst case response time for some activities is highly dependent upon the size
of the project model. For our small elevator model and the medium size Cruise
Control system provided with Teamwork the consistency check time was 15-45
seconds on the Apollo 3000. The amount of time required to bring up Teamwork is
about 50 seconds. Switching editors and diagrams was fast with response times of
1-5 seconds observed. Diagrams which have already been read in are evidently
buffered by Teamwork or the underlying DBMS since their retrieval time is about 1
second.

6

% 
I

B- 19
UNCLASSIFIED



UNCLASSIFIED

2.9 Do text or table editors provide templates or standard formats for

entering and editing data?

TAGS

TAGS provides tables with predefimed columns for defining variables and data "'

types.

G is a highly graphic language, so that required text entries are minimal and consist
of short names, labels, expressions, and comments. AUTO-G provides the user
with a single entry line at the top of the editor window in which to enter the required
name or text. p

BROWSE in its textual form provides templates for entering and editing data.
DCDS does have a synonym capability.

In the case of data dictionary items, there are a number of standard templates which
may be modified by the user. The data entry format is consistent troughout.
Abbreviations are not allowed. Synonyms are provided by the ALIAS feature. The
user must be familiar with a text editor available on the host operating system.

.,,MYLQ.K

The editor commands are consistent between different window types. Version 2.2
allows user-defined data dictionary templates. In Version 2.3, users can predefine
their own templates for process and module specifications. In Version 3, more
enhancement toward user defined menus and forms is planned.

.4.

B-20 .:%-
UNCLASSIFIED

.4.%



UNCLASSIFIED

2.10 Does the tool automatically number and label processes and data
flows where previous information or conventions make this possible, -
or does the tool force the user to number and label all processes and
flows?
TAQS

In TAGS, the designer explicitly defines the data flow between components and
names and numbers each component and connector. There is little or no aid in
specifying system decomposition, except that the DA will show errors from
incorrect operation. This aspect is expected to be improved, but Teledyne Brown
has no delivery date yet.

AUTOQ

No, all process elements and signals are laoelled by the designer. In fact, signal
and message declarations must be propagated to the superior levels in a tree, which
can require many tedious entries.

DCDS

There is no automatic numbering or labelling. Everything must be explicitly named ... -"

by the user.

The tool automatically indexes processes and external entities used in DFDs. .,.
Processes may be reindexed, but the tool provides no way to reindex external
entities. No other DFD elements, or elements used in other diagrams are labeled
automatically. When a process is decomposed at a lower level, the external flow
labels are automatically provided.

TEAMWORK 
b

Teamwork automatically numbers processes on DFDs by the Yourdon-DeMarco ....
numbering scheme. Teamwork provides facilities to renumber processes on
diagrams if the user considers this necessary.

B-21 .? '

"6



UNCLASSIFIED

2.11 Is it easy to pan across the diagram viewing area?

TAGS enforces a discipline upon the user of dividing diagrams and tables into
pages. Each page is then viewed separately. Panning is not required.

AUTO-G

To scroll across a document, one selects a node within the G-tree and then
repositions it at the opposite side of the screen, thereby repositioning the G-tree, a
time consuming process. The AUTO-G environment provides the user the ability
to scale G-trees, to allow more of the tree to fit on the screen at any moment. The
problem in dealing with a scaled down view is that all the text disappears. Unless
the user is familiar enough with the particular G-tree, he will be unable to navigate
about the tree. Additionally, for all practical purposes, editing is limited to trees at
full scale.

DIS .x

Panning across the viewing area takes considerable time since every time the user
steps across the drawing area, a complete redrawing of the diagram and menu .

occurs.

MME

STP provides scroll bars for panning across diagrams. STP also provides a -- %
panning area in all editors other than PICture. %

TEAM-WOQRK

Yes; Teamwork provides scroll bars to pan across the viewing area.

_ I

J"% %, X'N *W ". "N



UNCLASSIFIED

2.12 Describe the zooming and/or windowing capabilities.

TAMS

No zoom-in capability is needed, given its single page diagramming constraints. V

AUTOZG

AUTO-G provides the designer with nine zoom-out levels ("scales"), to view a G-
tree as an unlabeled miniature of the original unscaled tree. Using a scaled view of
the tree, the designer can select a tree node for centering the unscaled view. This
provides an alternative means to scroll the diagram. V

There is no windowing capability. The evaluators were unable to find a limit to the
number of zooming levels. The text contained in the diagrams became illegible
when the zooming level was either very high or very low.

The windowing capabilities are excellent, as they fully utilize Sun's windowing
system. Zooming is easy to do, but only three zooming sizes are allowed.

Four zoom sizes are provided by Teamwork: 1:1, 1:2, 1:4, and 1:8. A diagram
with a zoom setting of 1:4 and below is very difficult to read. We felt that a 3:4 or
user selectable zoom setting would be useful. Windowing capabilities are good,
allowing for the repositioning and sizing of each window and even shrinking it to a
title bar.

B-23
UNCLASSIFIED

N",

~~~~~~~~'- ~~~' W" r **9 r r*- er* W~~'~ ~%I ,~. ' '


UNCLASSIFIED

2.13 Can you make entries in the data dictionary while using the graphics
editor, without having to switch editors?

TAM

All dictionary inputs are done through one separate editor, in terms of the parameter
tables.

Yes, because the graphics editor is used for all entries, including text labels,
variable declarations, and annotations. '-

~D

No, ENTRY, the textual input editor, would be used.

Yes. While in a graphical editor, the user can select the option "Generate data
dictionary," and all data dictionary entries are made automatically. (Note that there
is no update data dictionary option, the dictionary is generated each time.) Short
textual annotations which can be associated with diagram element are not stored in '
the data dictionary.

TEAhDKQBK
Yes, in the graphical editor the user can create and update data dictionary entries for
objects in the window. Some data dictionary edits however can only be performed
by entering a data dictionary element through the data dictionary editor.

In addition if an element name change is made the corresponding elements on
diagrams are not updated.

Version 2.3 of Teamwork supports free hand graphics to enhance the ability to
annotate diagrams or objects. In addition, Teamwork/DPI is available, that allows
the merging of graphics and text from different sources onto the same page during "
document preparation.

B-24
UNCLASSIFIED

UNCLASSIFIED -

2.14 How much time (in working hours) did you spend in training and S -
familiarization before beginning the first design project?

TAGS

About 3 days of training and some practice, plus a subsequent week of relatively
slow practice.

About 5 days of training and practice with two instructors.

The evaluators spent eight hours in training before starting the first design exercise, 0
and spent 14 hours more in training before starting the next design exercise.

Two days. 0

IEAMWDYRK

Approximately 2 days; the system is relatively easy to use.

B-25U L S0

UNCLASSIFIED

2.15 Describe how easy it was for you, with the training provided, to

learn to use the basic system features quickly and efficiently?

TAGS

As with any system of any complexity, one is constantly learning new aspects of
the system up to and including the very last day. TAGS is easy to become familiar
with to allow a novice to use it effectively within 5 days. IDA took most advantage
of calls on the HOT-LINE after training and a week's hand-holding by Teledyne
Brown.

AUT-QL

It was no more difficult than tools such as TAGS or DCDS, that are comparable in
depth of specification.

It took 4-5 hours to feel confident with the basic SSL concepts, but it took another
two more hours to feel comfortable with the syntax of DCDS's ENTRY tool.

By and large, this is an easy tool to learn. The two chief problems found were: 1)
when a diagram reached a certain size/scale, all text was suddenly hidden; some
hours were lost identifying what had happened. 2) it is supposedly possible to
change the default restricting external entities to the DFD context diagrams. Many
hours were lost finding that this was not so.

TEAMWOREK

It was easy to learn the system. Some improvements in the area of new user
support would be welcome. There is no online help facility. Also, the
documentation does not thoroughly discuss the design methodologies and the
relationship of the various tools to one another.

B-26
UNCLASSIFIED

I'

UNCLASSIFIED

2.16 Describe what online help is available.
IAIt

There is an on line help facility for the keyboard layout, which is particularly useful
for the MATH keyboard option -- it would be tough to remember all the math
symbols provided by TAGS (e.g. an upper-case 7 for Greek iota). There is no
tutorial online.

There is on-line help indicated for the d (database utility) facility; although for
the IDA evaluation, AUTO-G was unable to access it. There is no tutorial on-line.

There is no online help available.

There is a help mode which gives terse messages, enough to assist a user who is
familiar with the package. There are no detailed levels of online help. The help
messages are user-customizable and are accessed via IDEtool.

None. Most users with regular experience on Teamwork apparently find it easy
enough to recall the commands or choices.

B-27
UNCLASSIFIED

I I -

UNCLASSIFIED

2.17 Does the system provide user selective tailoring of basic graphic
characteristics, such as line width, text size, icon relative size, and
diagram element placement?

Diagram elements may be placed anywhere, and icon size automatically adjusted to
accommodate contained text.

ALTO

Icons are automatically sized to enclose text, and diagrams drawn to eliminate text
overlap.

No.

Diagram elements may be placed anywhere on the graphics display. There is no
control of line width or text size. Icon size can be adjusted to accommodate
contained text.

TEArIWQRK

Teamwork allows the user to place diagram elements anywhere on the graphics
display and to size icons to enclose their text. Teamwork does not have the ability
to tailor line size, width, or relative size of text.

1

B-28
UNCLASSIFIED

'1111 11 1 1 11 1 1 P i

UNCLASSIFIED 0

3. DESIGN SEMANTICS

3.1 Describe a representative set of the symbols or icons provided for
describing a system, versus use of text and labels?

Symbols other than connecting lines include:

" Rectangles, for specifying an expression or series of expressions or for

specifying a component in a System Block Diagram
* Conditionals (hot-dog shaped), with two exits

* Blocks with two additional vertical lines for specifying a procedure
• START, ENTRY, and terminate symbols for IORTDs and PPDs, etc.

* Hexagons and curve-sided boxes, for input/output communication and
transmission (including delays)

* Combinatorial symbols (circles with various markings) used to construct paths
connecting various 1/0 events and processing symbols, i.e., Fan-Out and Fan-
In symbols

* Comments, using a triangle to start a note

* Labels to boxes, connecting lines, and other required text

• External (dashed) and internal (solid) connector lines

• Terminator symbol for end of logic thread.

AUTO-Q

The G language uses rectangle as the basis for most of the constructs in the _
language. The rectangle is embellished with additional marks to symbolize a unique
function or meaning. For example:

A square loop in the upper right hand corner of a rectangle indicates the
structure (represented by the rectangle) is repeated, i.e., an array whose
elements are member of that structure S

A solid box centered along the top edge of a rectangle indicates the structure is a
template, i.e. a parameterizable generic representation

A wedge entering (leaving) the side of a rectangle indicates that the structure '.%

(process) is receiving (sending) a signal

A (solid) diamond centered on the upper left hand comer of a rectangle indicates
a function template (reference)

B-29
UNCLASSIFIED

UNCLASSIFIED

" A diamond centered along the side of a rectangle indicates the structure
represents a data object (variable) which may be read and write, read only, or
write only storage, depending on whether the diamond is solid, or half solid
and if half solid which half

" A hot dog shape signifies a state of a process.

F_nets are the diagram form for describing a system. At this level, requirements
are specified in terms of general functions to be performed and their order of
execution. Any system description can consist of multiple layers, which are usually
standard processing, exception and resource handling layers. The same symbols are
used for describing each layer. These symbols are function, and parallel, replicate,
selection, and iteration of functions. There are also symbols for triggering and
clearing of exceptions between layers, and for asserting and checking of data items.

DCDS uses RequirementNetworks (R nets) to specify software requirements. An
R net consists of an input stimulus which starts the processing of the R net and a
flowchart-like diagram. Each R net can have various validation points. Timing
requirements for paths between-the validation points can also be stored in the
database.

DCDS uses DDL to specify hardware requirements and the mapping of software
requirements to processes and hardware. At this level the rates of buses, links,
devices and processors may be specified.

The choice of symbols depends on the editor used and the methodology that editor
supports. The different diagram types provided are Data Flow Diagrams (DFDs),
Entity Relationship Diagrams (ERDs), State Transition Diagrams (STDs),
Structure Charts and Data Structure Diagrams. For DFDs, either Yourdon -
DeMarco or Gane-Sarson icons may be used.

A Picture Editor provides an additional set of symbols that can be used in
developing a user-defined type of diagram. However, the user would have to
modify the underlying control information file used by the system, and possibly
pieces of code, to integrate any such diagrams with the predefined ones.

TEAMWORK
,-

Standard symbols are defined for the data and control flow diagrams (DeMarco's -. .
symbols), and for structure charts, entity relationship diagrams, state transition
diagrams, process activation tables, and state/event tables.

B-30
UNCLASSIFIED

UNCLASSIFIED

3.2 Does the system support timing and performance specification?

T

Timing must be defined for input and output events. Time tags can be set by input
and output events, that permit checking of relative or elapsed time or accumulating
projected execution time. Library macros facilitate development of such
specifications.

Timing can be specified on events and processing paths in absolute or relative form.

DCDS •

Performance criteria are attached to every function, to define probability of
successful results. Low level timing can be specified on paths between validation
points.

No. V

TEAMWORK

No. With the user definable dictionary template in Version 2.3, such information
could be captured as an annotation in the database, and subsequently output in a
report or interpolated into a process specification template.

a-.

B-31
UNCLASSIFIED

_ V f . .; .- * a *f - 1 . - " : : ' :?v? a : :-' .

-M" jTK" v-nM -- .,. -- - - - --Y.% 9,

UNCLASSIFIED I

.

3.3 Does the tool provide for alternative representations of the
architecture elements (e.g., entity-relationship diagrams or Jackson
structure charts in lieu of a textual data dictionary)?

TAM

Only one view or method of representation is available for each part of TAGS.

AUIQ-G

Only one method of representation is available in the G language -- trees
representing the hierarchical decomposition. The textual T language may be used St,
alternatively. Automated translation between those two languages is available at
any time. ASA will soon permit T to be used on a G diagram as an alternative to
the G graphics.

The graphical Fnet and Rnet can be described in text as an alternative.

Only DFDs are provided for functional system specification. Data flow and data
store content can be defined using either Data Structure Diagrams or Entity
Relationship Diagrams. Various diagrams and tables (e.g., state transition diagram,
decision table, state event matrix, etc.) are available for definition of control |
aspects. STP does not provide any automatic translation from one to another. The
user may set switches to view data flows, control flows, or both.

Teamwork provides for data or control flow diagrams or both, ER diagrams,
structure charts, and state transition diagrams, process activation tables, or state-
event matrices for control decomposition. Neither Teamwork nor other tools i
support the automatic generation of one formalism from another. .-: ,

U. I,

B-32
v

U SS
:. .1'

b

B-32 ..
UNCLASSIFIED

~, w vs . 'C 'C C- 'p'.;-.'*~--~ Y' ~ % ' ~ C'V .'C C %I

UNCLASSIFIED

3.4 Does the tool's model of a process and mechanisms for process
communication force upon the designer any design decisions? For S
example: Is it easier to design a centrally controlled system as
opposed to a distributed control system, or vice versa?

TAGS

In general, no. However, TAGS supports a top-down decomposition approach to
system design. The decomposition of an SBD component is viewed at the
communication level; that is, the next-level down decomposition of a component is
a view of the constituent components and their communication interfaces. The data
that travels over each interface is well defined in a corresponding Input-Output "I.-
Parameter Table (IOPT).

The TAGS model for communication is synchronous, but it is possible to model
asynchronous communications.

No.

Yes, the tool forces the designer to make decisions about subsystems early in the
design process. It also requires the designer to make order of execution decisions
early in the design process since F nets are time-dependent.

It is easier to design centrally controlled systems. It is easier to proceed top-down
in original composition, since inputioutputs can be inherited by a child diagram.

TEAMWO(RK

It is easier to design centrally controlled systems. It is easier to proceed top-down
in original composition, since inputloutputs can be inherited by a child diagram. .

B-33
UNCLASSIFIED

I

UNCLASSIFIED

3.5 Does the system provide for separate and largely independent _

specification of subsystems, processes, data flow, control, and data, 0
to support alternative methods and patterns of architecture definition? A"

In originally creating a design, a top-down approach, working from the SBD to the
other tables and diagrams, seems preferable. With TAGS Configuration
Management, a user may catalog alternative proposals or architectures as separate
Engineering Change Proposals (ECPs). A "map" name is used to identify these
alternative system constructs for engineering analysis. Rejected ECPs are retained
as an historical record for life cycle maintenance. Approved ECPs become
Specification Change Notices (SCN).

AUTo-Q

AUTO-G is based on an integrated specification of all aspects of a design, and does
not force a particular procedure or series of steps on the designer, except for a basic
top-to-bottom progression.

"4D)CDS

In practical terms, the required database translations force one to follow the
recommended phases in the method. DCDS supports alternative hardware
configurations within one database. The user does not have to choose between
alternative hardware architectures until the MDL and TSL languages are used.

DCDS has no data flow diagramming capability. However, data flow and control
flow can be recorded using the text editor.

A top to bottom progression, with flow diagrams completed before the dictionary
entries, and other tables and charts done last, is the typical pattern.

TEAMRK

A top to bottom progression, with flow diagrams completed before the dictionary
entries, and other tables and charts done last, is the typical pattern.

B-34 "

UNCLASSIFIED

eI - -a ~ -. -~- ~ ~ -~ ~ ~ -- f'~ ~ ~ ". w ~ '.% '.."u % J% ' % %'q., % %.~ %' * i

UNCLASSIFI ED

3.6 Describe any capability for incorporating and tracing original textual
requirements.

TAGS

The configuration management utilities within TAGS provides a formal means for
recording original textual requirements and a baseline system specification.
Changes in specification would be handled by a formal change procedure. An audit
trail of design changes can be obtained. A new package, RVTS, provides
automated requirements tracing from requirements design specifications, however,
this has no automatic interface to the current TAGS system.

AUTOG'b

AUTO-G documents may be used to capture original requirements text and may be
tied to the system design at the document levels. No automated mechanism exists
for tracing associations.

Throughout the system an item may be traced back to the originating document andvarious design decisions, since this information is stored in the database.

Text annotations or comments on a diagram could be used to relate a design to
textual requirements. No automated tracing mechanisms are provided.

.5 TEAMWORK

No facility for relating functional requirements to a system specification exists other
than to make text notes, which the system ignores. No facilities exist to facilitate
the specification of hardware or network architectures or to specify timing.1
constraints for a real-time system. In Version 2.3, Teamwork supports the
inclusion of free form graphical notes.

'S

B-35

UNCLASSIFIED ,,.

UNCLASSIFIED

3.7 How large a system could this tool accommodate, so far as you can
tell?

TAGS

A present user, Unisys, states that they are now developing a naval navigation
system consisting of more than 2000 pages and 100 documents (SBD
components).

The performance and memory capacity of the host machine may impose limitations
on the size of the system.

AUTO-G

IDA has not evaluated this as yet. The performance and memory capacity of the
host machine may impose some limitations on the size of the system.
DCDS

The evaluators did not try to determine a limit on the database size.

No pertinent limits are documented, and IDA did not try to determine any.

TEAMWOR~K

IDA has not evaluated this factor as yet. It depends on host performance and
design methods used, among other considerations.

A

B-36

UNCLASSIFIED

UNCLASSIFIED

3.8 How many levels of decomposition does the tool support?
B

TAGS

TAGS supports seven levels of SBDs at this time.

AUTO

There are no published limits to the levels of decomposition that AUTO-G
supports.

Dens

The evaluators did not try to determine a limit to the number of levels of
decomposition.

A maximum of eleven levels of process decomposition is the limit on dataflow
diagrams. More than eleven levels can be accommodated if the user turns off the S

option in IDEtool to show the full process index, since the limitation is on the size
of the label in the process bubble.

The limitation on the level of process decomposition is only the name string for a
process, which is a concatenation of all the parent process id numbers and the
current process id number and is limited to 64 characters including the separators.

I.

B-37
UNCLASSIFIED

| -

UNCLASSIFIED

3.9 Does the tool actively assist the generation or development of
software to be written in Ada? Does it produce SADMT
automatically from a high level design? Does the tool allow
representing tasks, packages, and generic units?

The TAGS simulation compiler generates Ada as an intermediate representation.
However, there is no means for a designer to control or identify tasks, packages, or
generics. The Ada code generated by the SC is primarily for interpretive execution.
However, the Ada Code Generator provides the user the ability to associate
IORTDs with tasks, and parameter tables to packages. SADMT generation
development is planned for 1988.

AUTOQG

G and T languages are very well suited to Ada semantics. ASA has a commitment
to the Royal Military College to produce a G-to-Ada translator within the 1988 time
period. In addition, ASA has delivered a G to SADMT translator for SDI
applications, and is updating it for SADMT version 1.5.

Ada code will be generated to support simulation. SADMT or any Ada PDL is not

supported. ..

Data types can be generated in Ada, Pascal or C. There is no automatic generation
of procedural PDL, SADMT, or code text. The system has no simulation
capability.

TEAMWWORK
SADMT is not produced automatically, nor any procedural code text. Support for
the design of Ada language applications is forthcoming in Version 3 and later
releases. Version 3 will include an Ada design editor based on Buhr graphic
notations. Also planned are a context specific window interface for text editing,
and static checking and interpretive execution of Ada code.

B-38

UNCLASSIFIED

•.r

.r% VE\.~~d. i~~%~. , . ' - I

UNCLASSIFIED',

3.10 How well does the native design language map to SDI's SADMT?

For example: Which SADMT constructs does it provide/not provide? o

TAGS

It is believed that mapping to SADMT would not be difficult. The block diagrams
used to specify input/output procedures between elements (IORTDs) and
procedures and macros (PPDs and MACs) seem to fit well with SADMT concepts.

However, the SADMT mechanisms for inter-process communication and IORL's
mechanisms are radically different. SADMT uses an asynchronous message
passing strategy and IORL uses synchronous sends and receives. It may be
difficult to handle this mapping situation.

Completely, at the present state of the SADMT simulation environment.

Given the hierarchy of specification languages involved (SSL, RSL, MDL), it isn't •
clear how easily the SADMT process hierarchy could be generated. In principle,
the same constructs exist as in SADMT.

Only in respect to mapping the hierarchy of process bubbles to SADMT processes.
It is not possible to represent packages, generics, hardware configurations (i.e.,
processors, memory and switches), timing constraints, details of process
communication, etc., in the STP design languages.

The process hierarchy conforms to SADMT requirements, but no formal
specification of leaf processes, timing requirements, or hardware allocations is
provided.

-.. .

B-39
UNCLASSIFIED

- - -- -- - -- - --

UNCLASSIFIED

3.11 Is the user provided with the option to specify process behavior by
means of Ada text?

No.

AlUrOQ

No. T language text will be available soon as an alternative to G icons.

No. '

Process behavior can be described by any text, including Ada text. This is . ,
transparent to the tool.

Teamwork provides an empty text specification template for each module.
Teamwork does no processing of any text entered. Version 2.3 allows a user
defined template. Ada language support is planned for Version 3 in 1988 and later.

:.1

B-40
UNCLASSIFIED

7 UNCLASSIFIED N
4. DIAGNOSTICS

4.1 Does the tool provide syntactic and semantic checking between
diagrams, data dictionary entries, and between data dictionary entries
and diagrams?

IAM

Syntactic and static semantic checking of the diagrams is done by the DA
(diagnostic analyzer) and is presented through the diagnostic comments, dictionary,
and cross reference tables (discussed above).

The checkout and validation of a design requires use of the DA. It may be applied
either for the full system or for a part. Moreover, the analysis is apparently
cumulative, in that parts of the analysis are retained, and a new version is analyzed
only as far as its changes are concerned. Thus the first analysis of a new and large
system is somewhat time-consuming, while the next analysis (with only a few
changes or added block diagrams or tables) will be faster. It therefore would be
possible to both make incremental analyses or go to a reanalysis regularly. Self
checking for consistency during decomposition is NOT provided, but the analyzer
may be run for the SBDs while they are first being defined. 4'
AUtIo

Because the G editor is syntax directed, any G-tree is guaranteed to be syntactically
correct. Static semantics checking of the tree is done by the semantic analyzer,
SEMA, and its results are presented to the user as diagram annotations, which is
particularly convenient for debugging.

The tool checks completeness and consistency between hierarchical levels, and
checks for undefined entries in the data dictionary. Diagrams are checked for
syntactic correctness before being saved, and cannot be saved in some instances - -.
unless correct. Users may add their own consistency and completeness checks i'
through database query files. g_ Nbb

The tool provides syntactic checking between data flow diagrams, and between
them and the data dictionary. Checking of control flows and their specification -;'-,

tables apparently was not fully implemented in the version provided to IDA. , L..

,pP

B-41
UNCLASSIFIED

ImI
o .. %.

-a ,%.%_

'k'" "l"r'l
- :

li
r -

" l - ="]' "t' "l' . .. |l 111 ' :] : I 1 - I

UNCLASSIFIED

Teamwork supports syntactic and semantic checking between diagrams of the same
type in accordance with rules defined in the reference manuals. Both existence of
data dictionary entries corresponding to flows or variables on a graphic diagram and
the syntax of the entries may be checked. The user can choose to diagnose a given
diagram or table, a subtree within a design proceeding down in decomposition from
one selected level, or the entire system design. In Version 2.3, diagnostic checking
can be done in background mode outside of Teamwork.

-.

B-42
UNCLASSIFIED

UNCLASSIFIED

4.2 Are level-to-level associations maintained in the data dictionary? For
example: When you explode a process into a subprocess, are the
relationships between objects in the parent process maintained and
enforced in the subprocess?

TAGS

The DA is excellent at enforcing that 1/0 interfaces be picked up at lower level
SBDs and that IORTDs only reference interfaces attached to the corresponding SBD
component.

Yes, this is a key factor in the G language.

The system checks if each data item is produced or consumed, but it does not
automatically check if a function has been properly exploded. This check requires
manual entry of each decomposed function and comments to check the
interconnections. (See comments of the Phase 3 checkfile on pathflow and item
flow).

The database is not completely integrated, although an integrated database is
maintained on a per-language basis. A separate integrated database is maintained at
each stage of the development. The pertinent information in each database can be
downloaded to successive databases.

Yes, when a process is exploded the external data flows are carried into the
decomposition automatically. Parent and child diagrams are kept separately.
Relationships are checked when a diagram's data dictionary is generated or the
system decomposition is checked.

Level to level associations are maintained in the Teamwork dictionary. These
associations are checked when the user explicitly invokes checking.

B-43
UNCLASSIFIED

V, 1_V

Q -W

UNCLASSIFIED

4.3 Do the diagnostic messages provide enough information to help
correct errors?

Error messages usually give a sufficient indication, but a document with further
explanation would be helpful. Error messages are keyed to reference numbers
automatically placed on diagrams by the system, so that the source of the error is
easily located most of the time.

AUTO (

Yes, in most cases.

DCDS

The graphical editor BROWSE merely states that there is an error and does not have
diagnostic error messages. QUERY's checking identifies what type of error has
been discovered. Messages are explained in the manual pertinent to the language
involved.

Yes, but problems do arise in the graphics where error sources become invisible
and there is no way to correlate the messages in the error window with the diagram.
An exception was found when an error in a data structure caused the unhelpful
message "Error on line 12," even though there are no "lines" in these diagrams. If
an anchor point is unconnected, a diagnostic message informs the user but does not
highlight the point, which may be very difficult to find. It would be helpful if items
causing an error were highlighted.

TEAMWORK

IDA had no problem understanding the diagnostic messages. The reference manual
contains a further explanation of each error message.

B-44r

UNCLASSIFIED

UNCLASSIFIED

5. DESIGN SUPPORT

5.1 Does the tool provide interfaces to other front-end design tools, data
bases, project management software, etc.?

TAUS

No.AUTo-

No.

No.

Yes, it provides an interface to a version control system, SCCS, in the case of 0
UNIX implementation. The underlying database package, TROLL, is accessible.
There is also the tool library, a set of C functions that can be used by user-written
programs. Integration with Sun's Network Software Environment has been
announced for 1988 release. -

Teamwork/DPI interfaces with Interleaf, Context, and Scribe publishing software. , . '

Teamwork also has been integrated with Sun's Network Software Environment for
configuration management and source code control, and with VAX set CMS, a
VAX configuration management system. Teamwork/ACCESS facilitates user
effort to interface with desired support software.

B-45
UNCLASSIFIED

- .,Z ., .

UNCLASSIFIED

5.2 Can data be imported/exported from the host data dictionary? If so,
describe how.

A system design can be put on media for backup or transport to another TAGS
installation on identical hardware. Other import/export requirements would have to
be provided via user prepared software.

No importing is possible except as T language or user prepared software.
Exporting as a text file to Unix is possible, but subsequent processing must be user
provided.

Yes, data can be imported and exported from the data dictionary. Exporting data is
accomplished by creating an ASCII file from a QUERY. Importing is done using
the @INPUT command, and requires the information to be in ENTRY's syntax.

Yes, data import/export commands, provided in the main menu, upload or produce
an ascii file.

TEAMWORK

Data can be imported/exported easily between versions of Teamwork running on -

different computers using Teamwork's dump/load capability. Using its ACCESS
mechanism, users can write application programs which IMPORT/EXPORT data
dictionary elements in any format. Cadre is currently working on a design database
interchange standard based on a contemplated Electronic Data Interchange Format
(EDIF) standard. This national standards activity appears to be gathering strong
interest among tool producers and users.

B-46
UNCLASSIFIED

U. ,',

.,- P .V'\ *.'* F~'T ~ - U~'~U~, ~ I ~ Nj~ '

UNCLASSIFIED

5.3 Does the tool support macros or command files for reusing design

elements or expediting frequent tasks?

TAGS

TAGS provides user-definable, parameterized macros for specifying 1/0 events in a
macro library. A basic macro library is provided. In addition, PPDs (i.e.,
recursive logic) can be catalogued in PPD libraries for reusability. In 1988, a PPD
index cataloguing tool will be available. This is based on a relational data base for
subsequent ease in retrieving the indices via key word characteristics. "

AUIO-G

Not as such, but the G template feature provides a powerful generic capability to
support design reusability. The "document" organization is also helpful here.

Yes. The INPUT feature is used for creating macros or command files.

Design elements can be reused with the "Copy Diagrams" mechanisms and the
cut/paste mechanisms. Many of the features of the Software Through Pictures
environment are separately executed programs, which can be combined into shell
scripts on a Unix system, and then added to the selections available from IDEtool
by modifying the IDEtool specification file.

TEAMWORK

Teamwork has cut/paste and copy mechanisms to reuse design information.

1-N

*'. . %I

W% %

UNCLASSIFIED 'P

A. V -P

UNCLASSIFIED

5.4 Is there a subset of tools that can be used for designing a system's
data base architecture? For example: Is there a tool for helping the
user to normalize relational data base?

TAGS

No.

AUTOQG

No.

The only tool for designing the database is the structure editor for Inets. There are

no tools to normalize the database.

There are editors for creating Chen entity-relationship diagrams and Jackson data
structure charts, but there are no tools to check if such a data base is in a normal
form.

TEAMWORK -

Teamwork provides support for the creation of entity-relationship diagrams. No I
database normalization tools are provided with the entity relationship diagram
facility.

,-!

7

B-4

UCA II

F7.

UNCLASSIFIED

5.5 Does the tool accommodate the design of systems that incorporate
artificial intelligence techniques (i.e., expert systems, natural •
language parsers, query-answer systems, etc.)?

No specially tailored features exist, but its basic capabilities are applicable.

No specially tailored features exist, but its basic capabilities are applicable.

DCDS

No specially tailored features exist, but its basic capabilities are applicable.
MMm

The tool includes the RAPID/USE language, which can be compiled to recognize -,
input strings and execute associated code.

No specially tailored features exist, but its basic capabilities are applicable. 0

-.- %'

B-49
UNCLASSIFIED

L A IN

UNCLASSIFIED

S.6 Does the tool provide analysis techniques that identify the optimum
design from a group of alternative designs? If so, how do these %
work?

TAGS

There are no tools that automatically identify optimal designs, but the TAGS
Simulation Compiler, along with CM ECPs, allows the user to perform both static
and dynamic analyses of alternative design concepts. Thus manual trade-off studies
of critical requirements design data allow the engineer to select the optimal
algorithm or system architecture.
AUTO-G:

No.

No, there are no analysis techniques in the tool for identifying optimum designs.

No.

TEAMWORBK

No. ACCESS supports user written analysis programs and metrics.

.0, A.-.;p

B-50

UNCLASSIFIED

,. -, "- - "- , .-- ." ," .'-" """ -," ""."", -'-"-" "- "-''- -"""-""-""." ".' -" ," -" " " "- " -7" . ','-.,1

UNCLASSIFIED

6. ADAPTABILITY

6.1 Does the system allow users to define their own structured method?

No.

AUTO-Q

It neither hinders nor explicitly supports a user community from following its own
procedures for developing G specifications on a given project.

DCDS

Yes, the system allows the user to define their own method and to construct their
own checks for their method. User-defined methods are supported for use with
DCDS's text editor, not with the graphics editor.

Not without extensive programming in C. The system utilities, PICture Editor,
Tool Library, and Tool Info control file provide some basic capabilities for this
purpose.

TEAMNQ.B.K

No. Teamwork's designers adopt the philosophy of protecting users from the
inconsistencies they may introduce if allowed to arbitrarily adjust icons and design
semantics. The Graphic Notes editor and open database architecture in Version 2.3
permit a user to augment Teamwork design methods, rather than modify them.

B-51
UNCLASSIFIED

UNCLASSIFIED

6.2 Does the tool come with an icon editor to permit user design of
icons?

IA~a

No.

No.

1P

The graphical editor cannot change an icon display or meaning. The syntax of the
ENTRY system is fixed, but users can create their own entities and attributes.

There is no icon editor. The picture editor provides a limited capability for
modifying existing icons and creating new ones, but none of these modifications .a
can be used in any other graphics editor.

No, but Teamwork version 2.3 provides an editor for user defined graphic icons as
comments or annotations on diagrams.

N

B-52 '
UNCLASSIFIED

I

V ~ .' :vV * ** -

UNCLASSIFIED

6.3 Are user defined validation rules allowed?

!AM

No.

AUTOQG

No.

User defined rules are allowed and can be used in static checking. ,I

The user must supply his own code to implement any additional checking, but its
activation can be coupled to the STP built-in diagnostics. ,%

User defined rules must be programmed in C and invoked outside of Teamwork.

@

O

...- ,..

J-. *
B-53

UNCLASSIFIED
0. .

O'.4j

UNCLASSIFIED

6.4 Does the system provide database access for linking user-written
reporting or output softwarte9

The TAGS SC Manual shows examples of the output processing utilities and , 1
sample plots for accessing the raw SC data. Special license provisions can be
obtained for read/write access to the TAGS data base (i.e., the IORL pictures).
Documentation and read/write access library routines are then provided. This is
being used by several TAGS users.

AUTOQG

ASA will provide database access information to users requiring it. The data
dictionary text can be output and captured as a Unix file for user-controlled
processing.

The system has its own QUERY language, which would suffice for many kinds of
querying. For other kinds of reports QUERY could produce a text file, which
could then be used by a user-written program. There are no user-callable routines
to access the database directly.

Yes, through the Troll database utilities. ""

TEAMWOQRK

Yes, the Teamwork ACCESS facility provides this capability. Both read and writecapability is provided in Version 2.3.

B-54.

U LI

•1

.1

UNCLASSIFIED

6.5 Does the system provide user access to the tool's architecture
descriptive data base for adding user defined entities, attributes, and
relationships serving such purposes as SADMT compatibility,
requirements traceability, interface validation, etc.?

If users write into the TAGS data base, they either must adhere to the DA syntax
checking or they can use the comment symbol to enter special text with keywords.
They could then scan the TAGS design data base searching for these keywords.
Also, whole comment pages could be entered, as DA does not check comments.

No.

Yes, users can easily add their own entities, attributes and relationships using the
Extend program, and can create files to check these user-written entries. This may
be done at any time, even if data already exists in the database. V

STPt

The system provides a mechanism for including user-defined attributes and
additional syntax (e.g. for process specifications).

With Version 2.3, users may write text entries into Teamwork's design database as
user defined attributes. In Version 3, user-defined menus and forms will enhance
the usability of these features for the purposes noted in the question.

B-55
UNCLASSIFIED

UNCLASSIFIED

7.0 PROJECT AND CONFIGURATION MANAGEMENT SUPPORT

7.1 Does the system provide version identification and time-date-
stamping for different architectures derived from a common
antecedent?

TAGS

Yes, version identification is available in the configuration management (CM)
utilities, and time-date stamping is provided elsewhere, and used particularly by the
diagnostic analyzer.

AUTOQG

Yes, every system or document (subsystem) may be marked by a user-chosen
version label, and automatic version labels are added by AUTO-G as well. No
time-date stamping is given, however.

No, the system does not provide version identification or time-date stamping.

sIE

No. However, it is expected to be used with the UNIX Source Code Control
System for such support. ,

TEAMWOR~K

Version identifiers are automatically associated with diagrams and tables, 16 deep.
Status labels on each diagram or table carry time-date stamping and such
information as author, creation and modification dates, scheduled completion dates,

A major limitation was that the versioning mechanism does not recall a consistent N
version of the entire design. The versioning mechanism only creates new versions 6
of each object separately. The distinction is important since several object changes
may be needed to effect one system change. To this end, Model Configuration 4P
Management capabilities will be included in release 3.0 of Teamwork.

B-56
UNCLASSIFIED

UNCLASSIFIED

7.2 Does the tool provide a project management utility? If so, describe
its capabilities.

No.

No.

No, there is no project management capability.

No.

No project management support is provided directly. A sample reporting program
is available under ACCESS that reads and lists status label information. This could '
serve as a basis for user-written report programs.

S

B5 %

UNCLASSIFIED/

UNCLASSIFIED

7.3 Can the project status be viewed for individual pieces of the system
being developed?

IAS

Yes, by using the Status Accounting Request menu (a CM option), a designer can
obtain an up-to-date progress report for the entire system or a selected subsystem.

AUIQO1

No.

No, the project status cannot be viewed for individual pieces of the system.

No.

Yes, see 7.2 on previous page.

IV

"2

B-58
UNCLASSIFIED

N

UNCLASSIFIED

7.4 Do the project management facilities provide PERT/CPM or other

types of analysis/planning tools for tracking the design effort? ,.

TAGS

No.

No.

iDa
No, there is no project management facility. S

No.

No.

r

B-59
UNCLASSIFIED

UNCLASSIFIED

7.5 What type of configuration management capabilities does the tool
have?

TAGS

TAGS provides a myriad of tools to support configuration management.
Configuration Manager has built-in controls. All diagrams are date-stamped, but
the overall system may also be placed under configuration management; though we
did not try it, Teledyne Brown offered to show us how, but warned us it imposed
constraints on updating (because the CM controls must be satisfied before change is
allowed.) TAGS' CM supports the use of Trouble Reports, Engineering Change
Proposals, Specification Change Notices, and Distribution Cover Sheets. These
"forms" allow the precise definition of the system requirements and problems,
possible solutions, well defined proposed changes, and a record of actual
modifications.

AUTO-G

None. At least one user has coupled AUTO-G to its proprietary CM software.

DCDS

None.

None. IDE has announced coupling to external CM package for 1988.

Teamwork has been coupled to other configuration management software, see
question 5.1; the Model Configuration Management package is expected in 1988 in
Version 3.

B-60
UNCLASSIFIED +U-

mmJ', .. .'eY,,.z '.+"..l'. P.jl~i~m r1 "..- .- - ,,-f-.-

UNCLASSIFIED

7.6 Does the tool support traceability for decisions and changes over the
entire system life-cycle (e.g., baselining and versioning)?

Yes, Trouble Reports, Engineering Change Notices, and Specification Change
Notices exist to make decisions and changes, once a design has been placed under
CM. The Status Accounting Request menu, the Update Request menu, and the
Audit Request menu give the user sufficient means to keep track of what has been
proposed, approved, and implemented.

AUTOQG
No. S

No.

No.

T.EAMWORK

Teamwork provides some object modification traceability through use of the Status -

Label which can be filled in on each version of an object.

B-61
UNCLASSIFIED

0i

, ,?

. . . fll' "t " " ' " I "i • 11 11 II 11tl. al t l~ll ' ' + , b ,1 S

DRAFT UNCLASSIFIED

7.7 What progress metric, if any, does the system produce? Is it a

quantified measure of completeness?

TAG

The TAGS Audit tool provides a count of design pages for each system component
in support of AFSCP 800-43 and 800-14. The system is scheduled to generate
metrics in early 1988 in CM on trouble reports, their frequency, specific modules,
magnitude of ECPs, time duration of trouble report, etc.

AUTOQ

None.

The system is used in a fixed sequence of phases, and the number indicates how
complete the system is. It is not a reliable guide, since later stages may demonstrate
an error and force the designer to go back a few stages.

None.

TEANOYORK

Version 2.3 incorporates a menu selection to compute the Bang complexity rating
[DeMarco].

.A

B-62 ,.-.
UNCLASSIFIED DRAFT

16'N

~ .~ ~ .p f._N :N

'N ,' %, '4% N% N .* ' N -

%.'AS * %.
*% -

UNCLASSIFIED

7.8 Can parts of the architecture definition be marked as draft, under
review, approved, etc.?

When placed under CM, using the Engineering Change Proposal form, any portion
of a system may be marked according to such status categories.

AUTOQG

Yes, by user-authored version labels.

DCDS provides for tagging of architecture sections' approval rating via the
COMPLETENESS attribute.

No. 0

Yes, status labels serve to do this.

%.- =. %

B-63

UNCLASSIFIED

UNCLASSIFIED

7.9 Does the tool support integrated work by multiple
analysts/workstations (e.g., a local area network)?

TAGS

Yes.

AUTOQG

Yes, a central database on a server is workable by using Unix protection, working
copies, and having a project administrator.

DCDS does not support more than one analyst working on the same database.

Yes. The file locking system must be enabled for this. Software Through Pictures .
also supports heterogeneous networking through the use of the Network File
System and/or XWindows so that users can work on different kinds of machines, "
including non-workstation servers.

TEAMWORK

Teamwork provides multiuser concurrency control and distributed processing
capabilities (see network capabilities listed in Appendix A). These are transparent
to users. Teamwork's distribution is as follows: a central project database server
resides on a single node, having multiple models, and communicates with remote
nodes running the Teamwork graphics processes.

I

or

B-64
UNCLASSIFIED

...I

UNCLASSIFIED

8. SIMULATION CAPABILITIES ; .

8.1 Describe the tool's dynamic tests or simulation on an architecture
definition.

TAGS

First, the DA checks the syntax and static semantics of the a system as defined in
IORL. Once this has been satisfactorily completed, the dynamic semantics are
analyzed by the TAGS simulation environment. The SC generates two files: an'-
ASCII trace listing and a binary trace file. Users then invoke the SC access utilities
to process the binary file to generate reports, graphs, and tables on their particular
installation's output devices. "Z. .

The dynamic semantics are analyzed by the TAGS simulation environment, which
consists of a simulation compiler (SC) that produces an executable model based on
Ada. Further static errors may be located during the SC phase. Finally, an
Executable Code Generator (ECG) produces Ada code that is passed via a network
or magnetic tape to a VAX (using the VMS operating system) for computation and
simulation. S

Simulation may be carried out at different (user defined) levels of detail. This is
achieved by selecting the SBDs and IORTDs of interest at the level being simulated. ,..
This is performed during the first phase of the SC, thus producing a "blueprint",
which is separately named and may be retained for further work, if needed.
VERIFY and BUILD processes then check for further errors and produce the S
model, then export the Ada code.

Compilation of the Ada code currently uses the DEC Ada compiler, though there
may be working compilers at the workstations in the future. During simulation,
three further inputs are needed: types of trace file messages needed; error message
limits for aborting the simulation; and the run-time parameters. These may be •
specified during the "simulation run setup session." Input to the simulation may be
either in files or the user terminal. Results are presented in reports, graphs, or -
tables.

AUTO-G

" '''t

Currently, no simulation is provided but development i.s underway on one called .
AUTO-X.

DCDS

:-y

There is no dynamic checking capability at this time, but a simulation capability,
from generated Ada code, is available as of November 1987.

None.
,-.'.!

B-65
UNCLASSIFIED

J .'

..

u-'- ~ ~ - . .,. . ****=*.,* *,

N

.11

I..

-,

p.R

r. ')i

V]

5'

UNCLASSIFIED .

8.2 Can you simulate just a subset of a system and/or use different levels
of detail? S'.
TAGS

Yes, TAGS allows the user to specify exactly what the user wishes to simulate.
That is to say, if the designer has an IORTD associated with a component which is
further decomposed, he or she may choose to simulate the system with the behavior --

for the component as specified in its IORTD or choose to simulate the system by
using the behavior of the constituent component as specified in their IORTD's.
AU-'O-G

Unknown. 0

DDS

Unknown.

N/A

TEAMWORK 26K
N/A 9

NIA

N

B-67
UNCLASSIFIED

-17

UNCLASSIFIED

9. DOCUMENT PRODUCTION

9.1 What facilities does the package support to print its diagrams and
tables?

IAQ

Primary hardcopy output is on POSTCRIPT based printers, such as the Apple
Laserwriters. A dot matrix printer capability also exists.

AUTO-G

The Hewlett Packard 7475 plotter and compatibles are supported.

Both the AT version and the VAX version supports Postscript formatted output

files (not tested by IDA).

It supports Postscript, Unix pic, or raster formatted output files and laser printers or 7
plotters that can print them.

Teamwork generates documents in Interleaf, Context, or Scribe formats.

B-68 ,
UNCLASSIFIED

.5.

UNCLASSIFIED

9.2 What is the maximum amount of textual description allowed per
object on graphic diagrams? Can it be included on diagram prints?

Besides the text utilities provided in CM, the graphics editor allows the user to
make free form comments, without any real limit other than screen size. For
example, PPD comment pages could include the SADMT syntax or Ada PDL.

AUTOlG

Any rectangle can be filled in with as much as the user desires.

The evaluators were unable to find a limit to the different types of textual
descriptions per object, as they can be user-defined, and there is no apparent limit to
the amount of text per entry.

The system allows a user to use 480 character lines to label a diagram element. All WI
of this is stored in the diagram and the data dictionary, but only 12 characters are ,

printed and, in the case of diagram name, only 20 are treated as significant. No
limit on data and process specification text was encountered. The only provided
attributes for data elements are type, constraints, aliases and selector. There are no
attributes for process specifications, although the system does list the input and
output data flows and provide a space for a textual description. This description is
not subject to any form of checking.

Teamwork provides for 64,000 bytes of textual description per object. In version
2.3 of Teamwork, object types may have user-defined attributes incorporated into
their data dictionary entries.

-N
B-69UNCLASSIFIED

UNCLASSIFIED

9.3 Does the system provide automated options or a general
report/graphics generation capability for documentation and graphics
derivable from its dictionary, such as printed or plotted diagrams,
hierarchical indices, interface control tables, parts lists, cross
reference charts, and other standard reports on an architecture?

TAGS

A dictionary listing, cross-reference reports, decomposition trace, data flow trace,
index of all documents, date and time change reports, and other standard reports are
available. Selected dictionary items may be queried.

AUTOQG

AUTO-G provides no separate reports or output other than the graphic design -,,

created by the user or the error annotations to it produced by SEMA. A data
dictionary listing may be viewed in a separate listing and captured in a Unix file for
separate processing. AUTO-G provides a way to search diagrams for a given
name.

The system provides a general report generation capability through QUERY, which
can produce hierarchical indexes, interface control tables, and other types of
reports.

The system provides the capability to output (print) either a portion or the entire data
dictionary through the Data Dictionary Program. In addition, the Data Dictionary
Program can also automatically create and print a table of contents for the data
dictionary. Dictionary can be queried selectively through the dictionary browse
feature.

Teamwork provides a document preparation interface (DPI) which, with '. , ;

Teamwork's ACCESS, can be used to produce dictionary reports. The user must,
however, program or edit each report. No standard reports are automatically
generated from the data dictionary. '. •

B-70
UNCLASSIFIED

I.~~~~~ In 'N N.- N 0. 'N j.~~j % I

UNCLASSIFIED

9.4 Does the system support DoD standard documentation formats?
TI WS

The system interfaces with the CONTEXT Corporation document processor.
CONTEXT supports the cataloguing of DoD-STD-2167 templates. IORL pages are
converted to POSTSCRIPT, and CONTEXT then allows automated cut-and-paste
and scaling and rotation of the IORL pages into DoD-STD-2167 documents.

AUTO

DoD standard documentation is not supported.

DCDS 0

DCDS supports Mil. Std. 2167 (DoD standard documentation).

STP

No DoD standard formats are supported. IDE has announced interfaces to the
technical publishing systems of Interleaf, Frame Technology, and Scribe Systems,
as well as support for the MIL-STD-2167 Data Item Definitions. One of IDE's
users has implemented a preliminary version of this capability by extensions to
Software Through Pictures. This product will not be available until early 1988.

TEAMWORQBK

Yes, Teamwork/DPI provides templates for all Mil-Std 2167 DID formats which
greatly facilitate the creation of these documents.

B-71
UNCLASSIFIED i,.

I]

"'V.

UNCLASSIFIED

9.5 Does the tool support the creation and cataloging of informal
graphics and tables to illustrate aspects of the designed system?

TAGS comment pages allow free form text. The Data Structure Diagrams (DSDs)
allow forms and table creation.

AUTO-G

No.

No.

It supports creation of informal graphics and tables, but does not catalog them or tie
them into the system specification.

TEAMWORK - -

Graphical and textual annotations are catalogued under Version 2.3.

06

B-72
UNCLASSIFIED

,

UNCLASSIFIED

9.6 Is the documentation of the tool adequate and readable in describing
the tool's capabilities and operational use? S

IAM

Documentation is extensive and does not appear to be worse than typical for a
package of this size. The Input-Output Requirements Language (IORL) is well
documented. The IORL manual provides a full specification. We did not rely on
documentation to answer most questions, but depended instead on direct contact
with development personnel.

However, the IORL as defined in the language reference manual and the IORL that
is acceptable to the DIAGNOSTIC ANALYZER are different. Tool
implementations are limited by machine and technology constraints. Therefore the S
tools provide a practical and working subset implementation of the language. The
limitations are noted in each manual. Producing a specification consistent with the
IORL defined in the language reference manual may result in errors by the DA. An
example of this is in the use of library macros for communication, which one said
was available but which are not. Another example is the manual's allowance of
global variables (at the IPT-O level) whereas only constants will pass the DA. Q

AUT-0-

The documentation provided is complete but not indexed, hence it may take time to
find specific information. The G and T reference manuals are well written. The
Toolset Users' Guide lacks thorough descriptions and command examples, but
does provide a description of error messages. Several complete design examples
for practical systems are available, a distinct advantage.

The documentation lacks a master index, so finding information was often difficult.
The documentation is generally complete, but large sections are out-of-date,
documenting the older Pascal version instead. The documentation covers the
language, method, and tools, though the language presentation is tediously long
and not usage oriented. The documentation also covers the tools and their
interrelationships, though the actual commands to execute certain steps are vague
occasionally. The diagnostics do not highlight errors well but are explicit in the .
kind of error found.

The documentation on the tools, diagnostic messages, and the Troll database is
complete. However, there is no documentation available on the methods supported
by the tool. A table of contents is provided for each section of the User Reference
Manual, but no overall index.

B-73
UNCLASSIFIED

UNCLASSIFIED

TEAMWORK

The feature documentation is well-indexed, complete and current Error diagnostics
are well documented. No documentation is provided for the methodologies. The
interrelationship of the various Teamwork tools is minimally documented.

S2

Z

B-74-

UN L-SIIE

A

B-74

UNCLASSIFIED

- -' I

- .. . -

UNCLASSIFIED

10. HARDWARE CONSIDERATIONS

10.1 From an ergonomic perspective, how would you rate the tool? For
example: Were you able to adjust the size of the text or objects on
the screen? Are the keyboard and mouse well designed? Was it quite
comfortable to use the tool?

Very good.
AUTO-G ,i

Very good. S

The man-machine interface is poorly designed. DCDS supports the Tektronics,
VT240, and PC monitors. The resolution of the PC monitors is usually 640 x 350
pixels. The resolution for the Tektronics monitor is 1024 x 768 pixels. The VT240 0
only supports the use of DCDS in text mode. In the AT version, the mouse cursor
moved to the center of the screen after every operation. The size of text or objects
could only be adjusted for all objects, not for a subset of object types.

LEP

The ergonomic design of the tool is very good. The tool supports high resolution Z1,7.
graphics, scaling, multiple windows, and movement through the windows via an
optical mouse.

IDA users were very comfortable with Teamwork on both Apollo and Sun
workstations.

B-75
UNCLASSIFIED

,*, No

UNCLASSIFIED 0

10.2 Is the tool ported to other hardware configurations?

TAGS

TBE is porting the system to X Windows Version 11 and Unix V.3 interface
standards.

AUTI-0

Currently, it is hosted on the Sun, Apollo, DEC Vax Station, and Atari 1040ST,
and may be used on any Unix 5 system with a graphics terminal, with some
performance loss.

No.

Software Through Pictures is available for all models of the Sun Workstation; the
DN 580, 3000, and 4000 series of the Apollo Domain workstation; the HP 9000
series 300 and series 800; the VAXstation II, 2000, and 3000 series under both
Ultrix and VMS; and the Sony NeWS workstation. A MASSCOMP '

implementation is underway.

T

Apollo, DEC VAX station, Sun, HP 900-300, and IBM PC-RT. Teamwork's
database can be hosted on any VAX machine.

""

- ---

'A,.-A?

.... .. . •,,, . L ,, .. ,.- - -- -,- ,,-";, 7 -" -" -" -" " " -" -" -" -'- " -'- -' ", 3. '="X 7-' '-" L-N,,"-"7"tT ' -I

UNCLASSIFIED

Appendix C

Design Exercise -- Elevator Control

Objective and Scope

This exercise is part of an evaluation effort to determine the useability and
effectiveness of certain computer-aided design systems. Using the designated computer-
aided design system, design a microcomputer software system to control and direct the
operation of M elevators in an N floor high rise office building. The control system should

provide fully automatic operation of all elevators, and accept the human input necessary to
conventional elevator service, such as requesting to board an elevator going up. In ,
addition, for monitoring and direction, there is a supervisory information display and
command terminal. Specific requirements and directions for conducting the exercise are
given in the following text.

Criteria for a Design and Conducting the Exercise

This design exercise is set up in two stages. The requirements as outlined below
are for the first stage, which describes a control system where each elevator is hardwired to
the master controller. The second stage, outlined later, provides for distributed control of
the elevator system (i.e., not hardwired).

In the initial attempt at completing the first stage of the exercise, the onboard
computer, elevator movement, door operation, onboard displays, etc. do not have to be
decomposed or designed. Rather they are represented as a single external input-output
interface to the master control subsystem. This interface transmits the elevator's status
message to the master and receives the commands from the master at the appropriate time
intervals. At some level of decomposition, the commmunications protocol at the interface
will have to become visible in the specification. (This approach conforms to the simulation
concept for SDI Battle Management architecture. Nevertheless, recognizing that the
responses of this interface are correlated over time with the input from the master, and vice-

*: versa, a valid simulation will have to include appropriate intelligence that produces such
* responses at the interface.) Note however that the on-floor buttons and lights, and the

C-1

UNCLASSIFIED

ow0

UNCLASSIFIED

supervisor command or query interfaces to the master must be defined. Also, failure

behavior for the master must be modeled. I

Control Systems and Control Regimes

There are two alternative control systems: a hardwired, centralized control system

(stage 1); and, a distributed control system (stage 2). Each control system provides two
alternative control regimes that represent alternative approaches to achieving the

performance goal of minimum average time between a passenger boarding request and the

arrival of the passenger at the requested floor. "Control regime" refers to the overall

approach to coordinated control of all elevators, including the allocation of each elevator to
a specific type of service, determination of the elevator responding to a pending request,
and the control of elevator state changes (stopping and reversal). The possible types of
service for an elevator are:

* out-of-service: stopped indefinitely at some floor; .

* normal: serving all floors and passenger requests, one direction at a time;

* express: not serving (skipping) a contiguous set of floors.

Both control regimes must be "passenger friendly", meaning that any elevator
continues in one direction until all on-board passengers proceeding in that direction have

reached their floor.

A given control regime provides a certain resolution of questions such as: when an
elevator becomes empty of passengers, shall it continue in the direction it was taking, to . -

answer other boarding requests? would it be advantageous to have empty elevators proceed

to predetermined positions to await future boarding requests? is it advantageous to have a

mix of prepositioned and circulating elevators?

C-2

UNCLASSIFIED

~ Jd'~r ''* ~.~-- --- --

UNCLASSIFIED

Display and terminal capabilities

Human command and control of elevator activity is essential, and is provided
through a conv entional keyboard/display terminal, placed along with the master
microcomputer and associated equipment in some fixed location in the building. By
suitable key actions, the human supervisor may select one of the two alternative regimes, or
may input parameters or constraints for a given control regime, such as placing an elevator
out of service or designating a specific elevator to provide express service. In addition, ..V

direct manual action (requiring a conventional key to operate a switch) shall be possible at
any floor, to accomodate service and safety requirements. Please note that the human
supervisor and the master controller are two separate entities.

At each floor, up request and down request buttons are provided for passengers
[(with obvious exceptions for top and bottom floors) to signal for an elevator. There are

two types of buttons, to request either an express or a normal service elevator. If no

express elevator service is available, or a person requests express service at a floor where
express elevators will not stop, the display light will NOT go on, to indicate this fact. (As
stated later, at least one normal service elevator shall always exist.)

"% A bell, a direction indicator light, and a normal vs express service indicator light
above each elevator's door will be activated to announce an elevator's arrival at each floor

q! (just before it arrives) and its status (current direction, express or normal service). A

pushed request button remains lighted until a responding elevator arrives; also the elevator
indicator lights on the floor remain on until the elevator closes doors and departs.

On each elevator, conventional displays and button controls for passenger safety 0

and convenience are provided. For instance, a passenger may hold the doors and keep the

elevator from proceeding by constantly depressing a "doors open" button. Each on-board
passenger's stop floor request is shown via a lighted button. w*

C-3.V

UNCLASSIFIED

w..................... °~~ '?~ V

UNCLASSIFIED

First Stage

The basic control decisions affecting each elevator's service and their coordinated

activity are invested in a master microcomputer, which also handles the supervisor

interface, information processing, and command interpretation. The master computer

communicates with separate microcomputers aboard each elevator. The onboard computer
handles the primitive control functions directly associated with an elevator's displays and

buttons, door control, startup, speed control, etc. The master computer controls the on-

floor lights and announcement bell. The master computer samples each elevator's status
(present floor, direction, and pending passenger departure requests) during each elevator

stop. The master computer transmits commands, for example to set an elevator's next stop

and to start it up, before the elevator proceeds from its present stop. If a failure occurs,

certain default behavior ensues. If the master computer does not receive a status message

from an elevator within a time-out period (may vary with the number of floors the elevator

had to travel to next stop), it will signal the supervisor with an alarm message and then

consider the elevator as out of service. If the onboard computer of an elevator receives no
response from the master to its status message at its current stop, then after a time-out

period it will begin executing a default behavior. The default behavior (Sabbath mode) is to

proceed in its current direction, stopping at each subsequent floor, and reversing

automatically when it reaches the top or bottom floor. '.. -

In other words, it will circulate, stopping at every floor. The following control

regime is to be provided as a minimum. As stated later, a second regime is to be conceived

and added for the exercise. Elevators operate only in normal service, as defined above, or

are out of service. The master computer determines the movement and positioning of all
elevators which are in service. At each elevator's stop, the master receives a status .
message, as above, specifying the elevator's current floor, last direction of movement, and

all pending passenger requested floor stops. The master transmits back the next direction

and next stop of the elevator, and a start-up signal that activates the primitive onboard,.-
control to close doors and move on. The master selects the next stop so as to maintain
"passenger friendly" behavior (one direction until empty) and to minimize the waiting time

of prospective boarders. An empty elevator may be reversed at any floor, and when no

boarding requests are pending, empty elevators are placed out of service at their current
floor. An out of service elevator may be reactivated by the master at any time, by sending a

C-4

UNCLASSIFIED

" -m4 ', ' U

-a%,* r.LT3,*

UNCLASSIFIED

"open doors" command (when needed at its present floor) or a "next stop" command and

start-up signal to it.

The second control regime (designer's choice) is to provide express service
(designated by the supervisor by one or more elevator numbers) and other control rules as
designer decides might improve average waiting time. As appropriate, empty elevators also
may be prepositioned at different floors, possibly depending on time of day, such as the

first floor or some higher one, to await boarding requests. The supervisor may designate
(as a parameter) a given floor for prepositioning of each elevator. Also add a

decomposition and detailing of the onboard microcomputer software as an integral part of -

the overall system, rather than an external interface outside the system.

Secon4d Stage

Now model the elevator system using a distributed control approach, as outlined

below. At the top-most level, the elevator system can be viewed as containing four entities:
the set of elevators, a controller-- which is a particular elevator that has control at a

particular point in time, the environment, and the human supervisor. A fault introduced -
from an internal or external source could disrupt the functioning of one or more of these

entities. The elevator system should be modelled such that when an elevator goes out of
service, the other elevators and the controller can detect this event, modify the schedule to

accomodate the new configuration of elevators, and get any passengers on the out-of-

service elevator to their destination. Any elevator will be able to take over as the controller
(i.e., each elevator's microprocessor can provide scheduling, etc.). A controller is only ...

replaced by another elevator if the controller does not respond to a transmission from an
elevator within a specific period of time.

0

Communications Protocol. A specific communications protocol for the second % %
stage is described below to provide input for using the simulation capabilities of the tool

you are evaluating. The communications protocol consists of the bus topology with the
CSMA/CD (carrier sense, multiple access, with collision detection) control scheme.-
Broadband signaling using frequency division multiplexing (FDM) will be used. The bus
provides a bidirectional transmission facility to which all of the nodes (i.e.,
microprocessors on the elevators) are attached. Information signals propagate away from '4

the originating node in both directions to the terminated ends of the bus. Each node is 0

C-5

U NC LASS IFIED
'S e.

UNCLASSIFIED

tapped into the bus and copies the message as it passes that point in the cable. The A

CSMA/CD control scheme permits any node to begin transmitting data whenever it detects

that the bus is idle. The node continues to monitor the bus for interference from another
node that may have begun transmitting about the same time. Any collisions will be detected

by all transmitting nodes, causing those nodes to halt transmission for a short random time

period before attempting to transmit again.

Broadband signaling employs analog signals and multiplexing techniques on the
LAN medium to permit more than one node to transmit at a time. Frequency division
multiplexing creates multiple channels (frequency bands). Radio-frequency
modulator/demodulators (rf modems) are required at the sender and receiver. Use the

following specifications for the system: Bandwidth: 300 MHz, Channel size: 6-MHz, Data

rate per channel: 5 Mb/s. N=: Two adjacent 6-MHz channels can be used to provide a

single 12-MHz channel for data rates up to 10 Mb/s.

Frames. Messages are transmitted via frames across the bus. Each frame consists N

of the following fields: Information field: the actual message; Delimiter field: marks the
beginning and end of the message; Control field: contains status info., frame length, etc.;

Address field: source and destination indicator.

The size of each field is a follows: Information field: 5 bytes; Delimiter field: 2 -

bytes; Control field: 2 bytes; Address field: 4 bytes.

Each elevator has a unique numeric identification. The identification number also
indicates the type of service the elevator provides--express or normal. The information
field contains the request or command that is to be sent across the bus. For example, an
elevator could send a message to the controller that it received the controller's command to / S

respond to a boarding request at floor number five, and is presently moving past the third
floor at a velocity of 5 meters per second. .'

Fault Generation. The generation of faults is to be done using the simulation
capabilities of the CASE tool you are using. Try to model only those faults that would .,

cause an elevator or controller to go out of service. For example, the loss of the overhead
light in the elevator would not be considered to be an important fault. Use milliseconds to

describe transmission and delay time, and seconds as the unit of measure for simulating

C-6

UNCLASSIFIED -

4V'W V ,*

f a.

UNCLASSIFIED

out-of-service time. Use meters as the measure of distance travel, and meters/second as the
measure of speed (could make the problem more realistic by including velocity and
acceleration)..

AIN.

NP,

C-7v

U'S

UNCLAS~i~eD ;
- I,*

UNCLASSIFIED

APPENDIX D

GLOSSARY

D-1

UNCLASSIFIED

UNCLASSIFIED

GLOSSARY ''

AEGIS: A multiuser operating system for the Apollo Domain workstation.

Alpha: DCDS' small-grained functions.

ASA: Advanced System Architectures, vendor of Auto-G.

Auto-G: ASA's graphical design language.

Auto-T: ASA's textual design language. ".

BM/C 3 : Battle Management/Command, Control, and Communications.

Browse: DCDS's editor.

Cadre: Vendor of Teamwork.

CASE: Computer-Aided Software Engineering.

CM: Configuration Management.

Context: A desktop publishing software package.

CSE: STP's Control Structure Editor.

CSMA/CD: Carmier-Sense Multiple-Access with Collision Detection.

DA. TAGS' Diagnostic Analyzer.

DBMS: Data Base Management System.

DCDS: TRW's Distributed Computing Design System.

DDL DCDS' Distributed Design Language; defines architecture of H/W

and S/W.

DDM: DCDS' Distributed Design Method.

DFD: Data flow diagram.

DFE: STP's data flow diagram editor. S

Domain: Workstation made by Apollo.

DSD. Data structure diagram.

DSE: STP's data structure editor.

D-2

UNCLASSIFIED

St

.......w2 * 'd. * \a.l~

ILI A

UNCLASSIFIED

ECP: TAGS' Engineering Change Proposal utility.

ERA: Entity-Relationship-Attribute diagram.

ERD Entity relationship diagram, synonym for ERA.

ERE: STPs entity relationship editor.

FDM: Frequency division multiplexing.

F_net: DCDS' Functional network; used to define a functional model of

the system.

Graphic Notes: An editor in Teamwork that provides object annotations in free

form graphics.

H/W: Hardware.

IBM RT PC: IBM's RISC machine.

BM AT: IBM microcomputer based on the Intel 80286.

IBM PC: IBM microcomputer based on the Intel 8088.

IDE: Interactive Development Environments, vendor of STP.

IDEtool: STP's main menu.

I-net: DCDS' Item network; used to represent the time sequence and

arrangement of data (items).

Interleaf: A desktop publishing software package.

I/0 Input/Output.

IOPT: TAGS' I/O Parameter Table; specifies communication parameters

between system components.

IORL: TAGS' I/O Requirements Language; the graphical system design
language, which allows the user to draw block diagrams of the

system to be a specified and then document the modules and links

to other parts of the system.

IORTD: /O Requirements and Timing Diagram; used to specify the

algorithmic logic that corresponds to an individual component

Macro: TAGS' procedure call for an I/O operation.

D-3

UNCLASSIFIED

.~- - % % %- %%'* ,~ -. 'V " . ' % *. - - . 'V *, "- "V . " .° ' %.).' ')' -. k

UNCLASSIFIED

MDL: DCDS' Module Development Language; defines units of program

code.

MDM. DCDS' Module Development Method.

MERGE LIBRARY: A TAGS tool which performs the merging of different system

components from other geographical locations into one database.

MIL-STD 2167: Military standard for documenting software.

PCT: STP's PICture editor, a general-purpose graphics editor.

PIC: STP's PICture editor; synonym for PCT.

PPD: TAGS' Predefined Process Diagram; a procedure definition.

PDL: Process Description Language.

QUERY: DCDS' database query language; used to create reports and extract

information.

RSL: DCDS' Requirements Specification Language.

RVTS: Teledyne Brown's package for tracking system requirements.

Rnet: DCDS' Requirements network; a directed graph defining the flow
of control between alphas and specifies the system response to

events and input messages.

SA/PDL: SDI Architecture Process Description Language. Has been

superceded by SADMT.

SADMT: SDI Architecture Dataflow Modeling Technique.

SBD: TAGS' Schematic Block Diagram; represent components of a

system.

SC: Structure Chart. "'

SCE: STP's Structure Chart Editor. :e

Scribe: A desktop publishing software package.

SEMA: Auto-G's SEMantic Analyzer. %

SREM: DCDS' System REquirements Method.

D-4II

UNCLASSIFIED

UNCLASSIFIED

SSL: DCDS' System Engineering Language; defines systems and their

function.

STD: State Transition Diagram. '

STE: STP's State Transition Editor.

STP: IDE's Software through Pictures.

S/W: Software.

SYSREM: DCDS' System Requirements Engineering Method.

TAGS: Teledyne Brown's Technology for the Automated Generation of

Systems.

Tasks: DCDS' term for a cluster of R nets.

TDE: STP's Transition Diagram Editor.

Teamwork: Cadre's Teamwork.

Teamwork/ACCESS: Teamwork utility to access its data dictionary.

Teamwork/DPI: Teamwork's Document Production Interface.

Teamwork/IM: Teamwork's Information Modeling utility; used to implement

Chen Entity-Relation diagrams.

Teamwork/RT: Teamwork's tool for Structured Analysis with Real Time

Extensions.

Teamwork/SA: Teamwork's tool for Structured Analysis. ,r %

Teamwork/SD: Teamwork's tool for Structured Design. "

Teledyne Brown: Vendor of TAGS. S

ToolInfo: STP's specification file for customizing STP.

Troll: Database package used internally by STP.

TRW: Vendor of DCDS. 0

TSL: DCDS' Test Support Language.

TSM: DCDS' Test Support Method. ,

Unix: A multiuser operating system from AT&T.

D-5

UNCLASSIFIED

. -7 " " "-;.

UNCLASSIFIED

VAX: Digital Equipment Corporation computer model.

Visible Connections: STP's set of published file formats which allow the user to

customize the tool set.

VMS: A multiuser operating system for VAX computers.

XQT Estimate: DCDS' construct for specifying timing requirements for individual

lines of code.

, U,.

)p 1

, .

.1

D-6

UNCLASSIFIED

Distribution List for IDA Paper P-2062

NAME AND ADDRESS NUMBER OF COPIES -

Sponsor

Lt. Col. Jon Rindt 3 copies
SDIO/SYS, Room 1E149
Pentagon
Washington, D.C. 20301-7100 N

Other

Geoffrey Baum 1 copy --.
Martin Marietta
P.O. Box 1260 A
Denver, CO 80201-1260

Ernst M. Binder 1 copy
General Electric Co.
Bldg. 8, Room 8722 0
P.O. Box 8555
Philadelphia, PA 19101

R.T. Broacha 1 copy
General Research Corp.
5383 Hollister .
P.O. Box 6770
Santa Barbara, CA 93111

Alice Brown 1 copy
Mail Stop 23
ECI Division
E-Systems, Inc.
P.O. Box 12248
St. Petersburg, FL 33733-2248

Mr. Roger Carson 1 copy
Riverside Research Institute
1815 North Fort Myer Drive
Suite 100
Arlington, VA 22209

Subhash Chadha 1 copy
Navistar International Transportation Corp.
1901 S. Meyers Road
Oak Brook Terrace, IL 60148

-i.1*,'

Ira vS
4

w.'W Ira. V., F. ! 1 - 5

Louis Chmura I copy
Code 5533
Naval Research Lab
Washington, DC 20375-5000

Judy Clapp I copy
Mitre Corp.
Burlington Road
Bedford, MA 01730 .-1
Carol Combs 1 copy
National Security Agency
9800 Savage Road -* ,.
Ft. Meade, MD 20755-6000

Lee Cooper 1 copy
Advanced Technology

2121 Crystal Drive, Suite 200
Arlington, VA 22202

Larry Cox I copy
TRW
1950 Sunwest Lane, Suite 302
San Bernardino, CA 92408

David M. Davis 1 copy
Systems Engineering & Analysis
The MITRE Corporation
7525 Colshire Drive *

McLean, VA 22102-3481 -.

Ford Aerospace & Communications Corp. 1 copy
ATTN: Jim Egolf (MS 38A)
10440 State Highway 83
Colorado Springs, CO 80921 .4,.

Mr. Everhart 1 copy r.,
Colsa Inc.
6724 Oddessy Dr.
Huntsville, AL 35806 7

Agnes Fong 1 copy
TRW R2/2020
One Space Park "" •

Redondo Beach, CA 90278 ,:

."

16

k2 1vr%.,z p J-

p, m

IS

George Gearn 1 copy AA.
Applied Research & Engineering, Inc. %per
7 Railroad Avenue
Suite F
Bedford, MA 01750

David C. Hartmann 1 copy I
Washington C3I Networking Center
The MITRE Corporation
7525 Colshire Drive
McLean, VA 22102-3481

Norman Heck I copy
IBM
1300 N. 17th St., Suite 7190
Arlington, VA 22209

John Hendricks I copy e.
Systems Technology Inc.

242 Ocean Drive West N'ir
Stamford, CT 06902 X;**

Maris Juberts 1 copy % ,
Metrology B124
NBS
Gaithersburg, MD 20899

Joe Kadera 2 copies
Satellite & Space Electronics Division
Rockwell International Corp. (SX-25)
P.O. Box 3644
Seal Beach, CA 90740

Vicki Kitchen 1 copy I __*
Applied Research Inc.-A,
P.O. Box 11220
Huntsville, AL 35814-1220

Steve Nies 1 copy
SPS - -

P.O. Box 361697
Indiatlantic, FL 32909

General Dynamics Space Systems Division 1 copy .
P.O. Box 85990
San Diego, CA 92138
ATFN: Cindea Metzler (MZ C1-8570)

6' /_

N d'

Erich Muller Icopy

Sparta Inc.
7926 Jones Branch Dr.
McLean, VA 22102

T.F. "Skip" Saunders 1 copy

MITRE Corp.
Burlington Road
Burlington, MA 01730

Dr. John J. Shaw 1 copy

Alphatech, Inc.
2 Burlington Executive Center
ill Middlesex Turnpike
Burlington, MA 01803

Heather Shuck 1 copy ',

TRW 'a

1 Federal Systems Park
Fairfax, VA 22033

Steven Stendahl i copy

WJSA
1901 N. Ft. Myer Dr., Suite 800 F.

Arlington, VA 22209 'p

Martin Zlotnick 1 copy

NRC
8618 Westwood Center Dr.
Vienna, VA 22180

Defense Technical Information Center 2 copies

Cameron Station
Alexandria, VA 22314

IIT Research Institute 1 copy

4550 Forbes Blvd., Suite 300
Lanham, MD 20706 "

%.

,

",.1

.1 -YU-- -7-K77y771 7-. -w 7-7-75-

' . %

Vendor Contacts

Mr. Miguel Carrio 1 copy
Teledyne Brown Engineering .

3700 Pender Drive
Suite 200%'P
Fairfax, VA 22020

Ms. Yvonne Cekel 1 copy
Marketing Manager
Cadre Technologies, Inc.
222 Richmond Street
Providence, RI 02903 " -

Mr. Larry Christina, Jr. 1 copy
Technology Branch, CSSD-H-SBY
Battle Management Division
U.S. Army Strategic Defense Command-Huntsville
Post Office Box 1500
Huntsville, AL 35807-3801

Mr. Mike Guillebeau 1 copy
TRW
213 Wynn Drive
Huntsville, AL 35805

Dr. Anthony Wasserman, President 1 copy
Interactive Development Environments, Inc.
150 Fourth Street
Suite 210
San Francisco, CA 94103

Mr. Christopher Williams 1 copy '_

Advanced System Architectures
Johnson House
73-79 Park Street
GU 15 3PE, United Kingdom

s. -

.%° N. %

S

CSED Review Panel

Dr. Dan Alpert, Director 1 copy S

Center for Advanced Study
University of Illinois
912 W. Illinois Street
Urbana, IL 61801 '% .

Dr. Barry W. Boehm 1 copy

TkW Defense Systems Group
MS 2-2304
One Space Park :. -

Redondo Beach, CA 90278

Dr. Ruth Davis 1 copy

The Pymatuning Group, Inc.
2000 N. 15th Street, Suite 707
Arlington, VA 22201

Dr. Larry E. Druffel 1 copy

Software Engineering Institute -

Shadyside Place
480 South Aiken Ave.
Pittsburgh, PA 15231

Dr. C.E. Hutchinson, Dean 1 copy

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755 ,"

Mr. A.J. Jordano 1 copy :- .

Manager, Systems & Software
Engineering Headquarters
Federal Systems Division '.

6600 Rockledge Dr.
Bethesda, MD 20817

Mr. Robert K. Lehto 1 copy

Mainstay
302 Mill St.
Occoquan, VA 22125

Mr. Oliver Selfridge 1 copy .

45 Percy Road
Lexington, MA 02173

.. '
N

t.

IDA

General W.Y. Smith, HQ 1 copy
Mr. Seymour Deitchman, HQ 1 copy
Mr. Philip Major, HQ 1 copy
Ms. Charlene Pandoli, HQ 1 copy
Dr. Jack Kramer, CSED 1 copy
Dr. Cathy Jo Linn, CSED 20 copies
Dr. Dennis W. Fife, CSED 50 copies
Ms. Julia Sensiba, CSED 2 copies
IDA Control & Distribution Vault 3 copies

.1 .

'* -

S:.-.
•/

/. I

